INTERACTIVE DATAMINING PROCESS BASED ON HUMAN-CENTERED SYSTEM FOR BANKING MARKETING APPLICATIONS

Olivier Couturier, Engelbert Mephu Nguifo, Brigitte Noiret

2005

Abstract

Knowledge Discovery in Databases (KDD) is the new hope for marketing due to the increasing collection of large databases. There is a paradox because the companies must improve the development policy of customer loyalty by using methods that do not allow to treat large quantities of data. Our current work is the results of a study that we led on a association rules mining in banking marketing problem. Our first encouraging results steered our work towards a hierarchical association rules mining, using a user-driven approach rather than an automatic approach. The user is at the heart of the process, playing a role of evolutionary heuristic. Mining process is oriented according to intermediate expert’s choices. The final aim of our approach is to use the advantages of the methods to decrease both number of generated rules and expertise time. This paper presents the results of our research step for including the user into datamining process.

References

  1. Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between sets of items in large databases. In Buneman, P. and Jajodia, S., editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pages 207-216, Washington, D.C.
  2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. I. (1996). Fast discovery of association rules. In Advances in knowledge discovery and data mining, pages 307-328. American Association for Artificial Intelligence.
  3. Bayardo, R. J. and Agrawal, R. (1999). Mining the most interesting rules. In Proc. of KDD'99, pages 145-154, San Diego, USA.
  4. Ben-Yahia, S. and Mephu-Nguifo, E. (2004). Emulating a cooperative behavior in a generic association rule visualization tool. In Proc. of ICTAI'04, Boca Raton, Florida, USA.
  5. Blanchard, J., Guillet, F., and Briand, H. (2003). Exploratory visualization for association rule rummaging. In Proceedings of the 4th International Workshop on Multimedia Data Mining MDM/KDD'03, Washington.
  6. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowledge discovery: An overview. In Advances in Knowlegde Discovery and Data Mining, pages 1-34.
  7. Freitas, A. A. (1999). On rule interestingness measures. Knowledge-Based Systems journal, 12(5-6):309-315.
  8. Han, J. and Fu, Y. (1995). Discovery of multiple-level association rules from large databases. In Proc. of VLDB'95, pages 420-431, Zürich, Switzerland.
  9. Hilderman, R. J. and Hamilton, H. J. (2001). Knowledge discovery and measures of interest. Kluwer Acaedemic Publishers.
  10. Hipp, J., Myka, A., Wirth, R., and Güntzer, U. (1998). A new algorithm for faster mining of generalized association rules. In Proc. of PKDD 7898, pages 74-82, Nantes, France.
  11. Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A. I. (1994). Finding interesting rules from large sets of discovered association rules. In Proc. of CIKM'94, pages 401-407. ACM Press.
  12. Klemettinen, M., Mannila, H., and Toivonen, H. (1996). Interactive exploration of discovered knowledge : A methodology for interaction and usability studies. Technical report, University of Helsinki.
  13. Kuntz, P., Guillet, F., Lehn, R., and Briand, H. (2000). A user-driven process for mining association rules. In Proc. of PKDD'00, pages 160-168, Lyon, France.
  14. Liu, B., Hsu, W., and Chen, S. (1997). Using general impressions to analyze discovered classification rules. In Proc. of KDD'97, pages 31-36. AAAI Press.
  15. Liu, B., Hsu, W., Chen, S., and Ma, Y. (2000). Analyzing the subjective interestingness of association rules. IEEE Intelligent systems, 15(5):47-55.
  16. Liu, B., Hsu, W., Mun, L.-F., and Lee, H.-Y. (1996). Finding interesting patterns using user expectations. volume 11, pages 817-832.
  17. Liu, B., Hsu, W., Wang, K., and Chen, S. (1999). Visually aided exploration of interesting association rules. In Proc. of PAKDD'99, pages 380-389, Beijing, China.
  18. Matheus, C. J., Piatetsky-Shapiro, G., and McNeill, D. (1996). Selecting and reporting what is interesting : the kefir application to heathcare data. In Advances in Knowlegde Discovery and Data Mining, pages 495- 516.
  19. Morimoto, Y., Fukuda, T., Matsuzawa, H., Tokuyama, T., and Yoda, K. (1998). Algorithms for mining association rules for binary segmentations of huge categorical databases. In Proc. of VLDB'98, pages 380-391, New York City, New York, USA.
  20. Ohsaki, M., Kitaguchi, S., Okamoto, K., Yokoi, H., and Yamaguchi, T. (2004). Evaluation of rule interestingness measures with a clinical dataset on hepatitis. In Proc. of PKDD'04, pages 362-373, Pisa.
  21. Padmanabhan, B. and Tuzhilin, A. (1998). A belief-driven method for discovering unexpected patterns. In Press, A., editor, Proc. of KDD'98, pages 94-100, New York, USA.
  22. Padmanabhan, B. and Tuzhilin, A. (1999). Unexpectedness as a measure of interestingness in knowledge discovery. Decision support system, 27.
  23. Piatetsky-Shapiro, G. and Matheus, C. J. (1994). The interestingness of deviations. In Proc. of KDD'94, pages 25-36, Seattle, USA.
  24. Roddick, J. F. and Rice, S. (2001). What's interesting about cricket? on thresholds and anticipation in discovrerd rules. SIKKDD Explorations, 3(1):1-5.
  25. Shekar, B. and Natarajan, R. (2002). A fuzzy-graph-based approach to the determination of interestingness of association rules. In Proc. of PAKM'02, pages 377-388.
  26. Silberschatz, A. and Tuzhilin, A. (1995). On subjective measures of interestingness in knowledge discovery. In Proc. of KDDM'95, pages 275-281, Menlo Park, Californie, USA.
  27. Silberschatz, A. and Tuzhilin, A. (1996). User-assisted knowledge discovery : how much should the user be involved. In Proc. of DMKD'96, Montreal, Canada.
  28. Srikant, R. and Agrawal, R. (1997). Mining generalized association rules. Future Generation Computer Systems, 13(2-3):161-180.
  29. Srikant, R., Vu, Q., and Agrawal, R. (1997). Mining association rules with item constraints. In Proc. of KDD'97, pages 67-73.
  30. Tan, P.-N., Kumar, V., and Srivastava, J. (2002). Selecting the right interestingness measure for association patterns. In Proc. of KDD'02, pages 32-41. ACM Press.
  31. Tseng, S. (2001). Mining association rules with interestingness constraints in large databases. In International Journal of Fuzzy Systems, 3(2).
Download


Paper Citation


in Harvard Style

Couturier O., Mephu Nguifo E. and Noiret B. (2005). INTERACTIVE DATAMINING PROCESS BASED ON HUMAN-CENTERED SYSTEM FOR BANKING MARKETING APPLICATIONS . In Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 5: ICEIS, ISBN 972-8865-19-8, pages 104-109. DOI: 10.5220/0002550301040109


in Bibtex Style

@conference{iceis05,
author={Olivier Couturier and Engelbert Mephu Nguifo and Brigitte Noiret},
title={INTERACTIVE DATAMINING PROCESS BASED ON HUMAN-CENTERED SYSTEM FOR BANKING MARKETING APPLICATIONS},
booktitle={Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 5: ICEIS,},
year={2005},
pages={104-109},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002550301040109},
isbn={972-8865-19-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 5: ICEIS,
TI - INTERACTIVE DATAMINING PROCESS BASED ON HUMAN-CENTERED SYSTEM FOR BANKING MARKETING APPLICATIONS
SN - 972-8865-19-8
AU - Couturier O.
AU - Mephu Nguifo E.
AU - Noiret B.
PY - 2005
SP - 104
EP - 109
DO - 10.5220/0002550301040109