LINEAR QUADRATIC GAUSSIAN REGULATORS FOR MULTI-RATE SAMPLED-DATA STOCHASTIC SYSTEMS

L. Armesto, J. Tornero

2006

Abstract

In this paper, linear quadratic Gaussian regulators are presented and formalized for multi-rate sampled-data stochastic systems using two well-known approaches: lifting technique and time-variant periodic modeling. It has been demonstrated that both regulators are equivalent at the global frame-period with different computational costs and execution periods. An interesting analysis has been done to demonstrate the convergence of a periodic Kalman filter, used in the periodic regulator, into its equivalent continuous one (Bucy Kalman filter), when the periodicity ratio converges to infinity. In addition to this, in both regulators, multi-rate holds have been used, acting as interfaces between signals at different sampling rates, which may improve the system performance. A numerical example of LQG multi-rate control of a MIMO plant shows the application of both regulators, where in addition to showing the improvement with respect to the single-rate case.

References

  1. Albertos, P. (1990). Block Multirate Input-Output model for sampled-data control systems. IEEE Trans. on Automatic Control, AC-35(9):1085-1088.
  2. Araki, M. and Yamamoto, K. (1986). Multivariable multirate sampled-data systems: State-space description, transfer characteristics and nyquist criterion. IEEE Trans. on Automatic Control, AC-31(2):145-154.
  3. Armesto, L., Chroust, S., Vincze, M., and Tornero, J. (2004). Multi-rate fusion with vision and inertial sensors. In Int. Conf. on Robotics and Automation, pages 193-199.
  4. Armesto, L. and Tornero, J. (2003). Dual-rate high order holds based on primitive functions. In American Control Conference, pages 1140-1145.
  5. Armesto, L. and Tornero, J. (2004). Slam based on kalman filter for multi-rate fusion of laser and encoder measurements. In IEEE Int. Conf. on Intelligent Robots and Systems, pages 1860-1865.
  6. Bamieh, B., Pearson, J., B.A., F., and A., T. (1991). A lifting technique for linear periodic systems with applications to sampled-data control. Systems and Control Letters, 17:79-88.
  7. Braslavsky, J. H., Middleton, R. H., and Freudenberg, J. S. (1998). L2-induced norms and frequency gains of sampled-data sensitivity operators. IEEE Trans. on Automatic Control, 43(2):252-258.
  8. Chen, T. and Francis, B. (1995). Optimal Sampled-data Control Systems. Springer-Verlag, London.
  9. Colaneri, P. and de Nicolao, G. (1995). Multirate LQG control of continuous-time stochastic systems. Automatica, 31:591-596.
  10. Godbout, L., Jordan, D., and Apostolakis, I. (1990). Closedloop model for general multirate digital control systems. In IEEE Proceedings, volume 137 of D, pages 326-336.
  11. Hong, L. (1994). Multirate estimation. In Proceedings of the IEEE Aerospace and Electronics Conferences, pages 435-440.
  12. Julier, S. and Uhlmann, J. (2002). Reduced sigma points filters for the propagation of means and covariances through nonlinear transformations. In American Control Conference, volume 2, pages 887-892.
  13. Julier, S., Uhlmann, J., and Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformations of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, AC-45:477-482.
  14. Kabamba, P. (1987). Control of linear systems using generalized sampled-data hold functions. IEEE Transactions on Automatic Control, pages 772-783.
  15. Khargonekar, P., Poolla, K., and Tannenbaum, A. (1985). Robust control of linear time-invariant plants using periodic compensation. IEEE Transactions on Automatic Control, AC-30:1088-1985.
  16. Kranc, G. (1957). Input-output analysis of multirate feedback systems. IEEE Transactions on Automatic Control, AC-3:21-28.
  17. Lee, D. and Tomizuka, M. (2003). Multirate optimal state estimation with sensor fusion. In American Control Conference, pages 2887-2892.
  18. Loan, C. V. (1978). Computing integrals involving the matrix exponential. IEEE Trans. Automatic Control, 23:395-404.
  19. Qui, L. and Chen, T. (1999). Multi-rate sampled-data systems: All H8 suboptimal controllers and the minimum entropy controller. IEEE Trans. Automatic Control, 44(3):537-550.
  20. Shah, S., Gudi, R., and M.R., G. (1995). Adaptative multirate state and parameter estimation strategies with application to a bioreactor. AICHE Journal, 412:2451- 2464.
  21. Tangirala, A., Li, D., Patwardhan, R., Shah, S., and Chen, T. (1999). Issues in multi-rate process control. In Proceedings of the American Control Conference, pages 2771-2775.
  22. Tornero, J. (1985). Non-conventional sampled-data systems modelling. Control System Center Report 640/1985, University of Manchester (UMIST).
  23. Tornero, J., Albertos P., and Salt J. (1999). Periodic optimal control of multirate sampled data systems. In 14th World Congress of IFAC, pages 211-216, China.
  24. Tornero, J. and Armesto, L. (2003). A general formulation for generating multi-rate models. In American Control Conference, pages 1146-1151.
  25. Tornero, J. and Tomizuka, M. (2002). Modeling, analysis and design tools for dual-rate systems. In American Control Conference, pages 4116-4121.
  26. Zhang, H., Basin, M., and Skliar, M. (2004). Optimal state estimation with continous, multirate and randomly sampled measurements. In Proceedings of the American Control Conference.
Download


Paper Citation


in Harvard Style

Armesto L. and Tornero J. (2006). LINEAR QUADRATIC GAUSSIAN REGULATORS FOR MULTI-RATE SAMPLED-DATA STOCHASTIC SYSTEMS . In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-972-8865-61-0, pages 67-74. DOI: 10.5220/0001209000670074


in Bibtex Style

@conference{icinco06,
author={L. Armesto and J. Tornero},
title={LINEAR QUADRATIC GAUSSIAN REGULATORS FOR MULTI-RATE SAMPLED-DATA STOCHASTIC SYSTEMS},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2006},
pages={67-74},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001209000670074},
isbn={978-972-8865-61-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - LINEAR QUADRATIC GAUSSIAN REGULATORS FOR MULTI-RATE SAMPLED-DATA STOCHASTIC SYSTEMS
SN - 978-972-8865-61-0
AU - Armesto L.
AU - Tornero J.
PY - 2006
SP - 67
EP - 74
DO - 10.5220/0001209000670074