Modular Statistical Optimization and VQ Method for Image Recognition

Amar Djouak, Khalifa Djemal, Hichem Maaref

2006

Abstract

In this work, a modular statistical optimization method enriched by the introduction of VQ method dedicated to obtain the effectiveness and the optimal comuting time in image recognition system is poposed. In this aim, a comparative study of two RBF and an SVM classifiers are carried out. For that, features extraction is made based on used image database. These features are gathered into blocks. The statistical validation results allow thus via the suggested optimization loop to test the precision level of each block and to stop when this precision level is optimal. In the majority of the cases, this iterative step allows the computing time reduction of the recognition system. Finally, the introduction of vector quantization method allows more global accuracy to our architecture.

References

  1. S. Paek, C.L. Sable, V. Hatzivassiloglou, A. Jaimes, B.H. Schiffman, S.-F. Chang, K.R. Mckeown, “Integration of visual and text based approaches for the content labeling and classification of photographs”, ACM SIGIR 7899 Workshop Multimedia Indexing Retrieval, Berkeley, CA, 1999.
  2. S. Sclaroff et A. Pentland, “Modal Matching for Correspondence and Recognition” , IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 17, No. 6, pp 545-561.1995.
  3. T.Maenpaa, M.Pietikainen, J.Viertola. “Separating color and pattern information for color texture discrimination”. In Proc of 16th International Conference on Pattern recognition, 2002.
  4. D. Landgrebe, “Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data,” Information Processing for Remote Sensing, chapter one, Edited by C. H. Ghen, World Scientific Publishing, 1999.
  5. P. Wu, B. S. Manjunath, S. D. Newsam, and H. D. Shin, “A texture descriptor for image retrieval and browsing,” IEEE International Conference on Computer Vision and Pattern Recognition: Workshop on Content-Based Access of Image and Video Libraries, pp. 3-7, Fort Collins, June 1999.
  6. S. Newsam, B. Sumengen, and B. S. Manjunath, “Category-based image retrieval,” IEEE International Conference on Image Processing, Special Session on Multimedia Indexing, Browsing and Retrieval, Vol. 3, pp. 596-599, Thessalonika, October 2001
  7. A.Winter et C. Nastar, “Differential feature distribution maps for image segmentation and region queries in image databases” , CBAIVL Workshop at CVPR'99, Fort Collins, Colorado, June 22nd, 1999
  8. C.Faloutsos,R.Barber,M.Flickner,J.Hafner, W.Niblack, D.Petc, W.Equitz, “efficient and effective querying by image content”.J.Intell.Inform.syst.Vol.3. pp. 231-262. 1994.
  9. A. Pentland, R.W. Picard et S. Sclaroff “Photobook : Content-Based Manipulation of Image Databases”, Storage and Retrieval for Image and Video Databases II, Proc. SPIE, nb.2185, 1994.
  10. C. Vertan and N. Boujemaa, "Embedding Fuzzy Logic in Content Based ImageRetrieval", 19th International Meeting of the North American Fuzzy Information Processing Society NAFIPS 2000, Atlanta, Jul. 2000
  11. Yixin Chen, James Z.Wang, Jia Li “FIRM : fuzzily integrated region matching for content-based image retrieval” ACM Multimedia. pp. 543-545. 2001
  12. Takashi Ikeda et Masafumi Hagiwara “ Content-based image retrieval system using neural networks” International Journal of Neural Systems, Vol. 10, No. 5 . pp.417-424. 2000
  13. M. Egmont-Petersen, D. de Ridder, H. Handels “ Image processing with neural networksa review” Pattern Recognition Vol. 35, No. 10 pp. 2279-2301, 2002
  14. Vapnik,V.“The support vector method” Proceedings of ICANN'97, Lausanne. Switzerland. pp.583-588. 1997
  15. A. Djouak, K. Djemal, H. Maaref, “ Image retrieval based on features extraction and RBF classifiers” SSD. 2005. Sousse. Tunisia.
  16. Lebrun Gilles, Charrier Christophe, Lezoray Olivier « SVM training time reduction by vectorial quantization » CORESA'04, pp. 223-226, 2004
  17. D.L. Reily, L.N. Cooper, and C Elbaum. “A neural model for category learning”. Biological Cybernetics. Vol.45. pp. 35-41. 1982
  18. Michael R. Berthold, Jay Diamond “Boosting the Performance of RBF Networks with Dynamic Decay Adjustment” Neural Information Processing Systems. Vol.7 . pp. 521-528. 1995
  19. Jos De Brabanter, “LS-SVM Regression Modelling and its Applications” PHD thesis. June 2004. Catholic university of leuven . Belgium.
  20. Cohen, Jacob, 1960. “A coefficient of agreement for nominal scales”. Educational and Psychological Measurement, Vol. 20 pp. 37-46. 1960
Download


Paper Citation


in Harvard Style

Djouak A., Djemal K. and Maaref H. (2006). Modular Statistical Optimization and VQ Method for Image Recognition . In Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2006) ISBN 978-972-8865-68-9, pages 13-24. DOI: 10.5220/0001224600130024


in Bibtex Style

@conference{anniip06,
author={Amar Djouak and Khalifa Djemal and Hichem Maaref},
title={Modular Statistical Optimization and VQ Method for Image Recognition},
booktitle={Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2006)},
year={2006},
pages={13-24},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001224600130024},
isbn={978-972-8865-68-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2006)
TI - Modular Statistical Optimization and VQ Method for Image Recognition
SN - 978-972-8865-68-9
AU - Djouak A.
AU - Djemal K.
AU - Maaref H.
PY - 2006
SP - 13
EP - 24
DO - 10.5220/0001224600130024