ELLIPSE DETECTION IN DIGITAL IMAGE DATA USING GEOMETRIC FEATURES

Lars Libuda, Ingo Grothues, Karl-Friedrich Kraiss

2006

Abstract

Ellipse detection is an important task in vision based systems because many real world objects can be described by this primitive. This paper presents a fast data driven four stage filtering process which uses geometric features in each stage to synthesize ellipses from binary image data with the help of lines, arcs, and extended arcs. It can cope with partially occluded and overlapping ellipses, works fast and accurate and keeps memory consumption to a minimum.

References

  1. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679-698.
  2. Canzler, U. and Kraiss, K.-F. (2004). Person-adaptive facial feature analysis for an advanced wheelchair userinterface. In Drews, P., editor, Conference on Mechatronics & Robotics, volume Part III, pages 871-876, Aachen. Sascha Eysoldt Verlag.
  3. d'Orazio, T., Guaragnella, C., Leo, M., and Distante, A. (2004). A new algorithm for ball recognition using circle hough transform and neural classifier. Pattern Recognition, 37(3):393-408.
  4. Duda, R. and Hart, P. (1972). Use of the hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1):11-15.
  5. Fitzgibbon, A. W.and Pilu, M. and Fisher, R. B. (1999). Direct least-squares fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5):476-480.
  6. Guil, N. and Zapata, E. (1997). Lower order circle and ellipse hough transform. Pattern Recognition, 30(10):1729-1744.
  7. Ho, C. and Chen, L. (1996). A high-speed algorithm for elliptical object detection. IEEE Transactions on Image Processing, 5(3):547-550.
  8. Kim, E., Haseyama, M., and Kitajima, H. (2002). Fast and robust ellipse extraction from complicated images. In Proceedings of the first International Conference on Information Technology & Applications, Bathurst, Australia.
  9. Kim, E., Haseyama, M., and Kitajima, H. (2003). Fast line extraction from digital images using line segments. Systems and Computers in Japan, 34(10):76-89.
  10. Mclaughlin, R. (1998). Randomized hough transform: Improved ellipse detection with comparison. Pattern Recognition Letters, 19(3-4):299-305.
  11. McLaughlin, R. and Alder, M. (1998). The Hough transform versus the UpWrite. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4):396- 400.
  12. Piccioli, G., Michelli, E., Parodi, P., and Campani, M. (1994). Robust road sign detection and recognition from image sequences. In Proceedings of the IEEE Symposium on Intelligent Vehicles, pages 278-283, Paris, FR.
  13. Radford, C. and Houghton, D. (1989). Vehicle detection in open-world scenes using a hough transform technique. In Third International Conference on Image Processing and its Applications, pages 78-82, Warwick, UK.
  14. Sanz, J., Hinkle, E., and Jain, A. (1988). Radon and Projection Transform-Based Computer Vision. Springer Verlag.
  15. Thomas, S. and Chan, Y. (1989). A simple approach for the estimation of circular arc center and its radius. Computer Vision, Graphics, and Image Processing, 45(3):362-370.
  16. Xu, L., Oja, E., and Kultanen, P. (1990). A new curve detection method: Randomized hough transform (rht). Pattern Recognition Letters, 11(5):331-338.
Download


Paper Citation


in Harvard Style

Libuda L., Grothues I. and Kraiss K. (2006). ELLIPSE DETECTION IN DIGITAL IMAGE DATA USING GEOMETRIC FEATURES . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, ISBN 972-8865-40-6, pages 175-180. DOI: 10.5220/0001362301750180


in Bibtex Style

@conference{visapp06,
author={Lars Libuda and Ingo Grothues and Karl-Friedrich Kraiss},
title={ELLIPSE DETECTION IN DIGITAL IMAGE DATA USING GEOMETRIC FEATURES},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,},
year={2006},
pages={175-180},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001362301750180},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,
TI - ELLIPSE DETECTION IN DIGITAL IMAGE DATA USING GEOMETRIC FEATURES
SN - 972-8865-40-6
AU - Libuda L.
AU - Grothues I.
AU - Kraiss K.
PY - 2006
SP - 175
EP - 180
DO - 10.5220/0001362301750180