SURFACE REGISTRATION USING LOCAL SURFACE EXTENDED POLAR MAP

Elsayed E. Hemayed

2006

Abstract

In this paper, we are presenting a new surface signature-based representation that is orientation-independent and can be used to match and align surfaces under rigid transformation. The proposed scheme represents the surface patches in terms of their signatures. The surface signatures are formed as extended polar maps using the neighbours of each surface patch. Correlation of the maps is used to establish point correspondences between two views; from these correspondences a rigid transformation that aligns the views is calculated. The effectiveness of the proposed scheme is demonstrated through several registration experiments.

References

  1. Bernardini, F., Martin, I., Mittleman, J., Rushmeier, H., and Taubin, G. (2002). Building a digital model of michelangelo's florentine pieta. IEEE Computer Graphics & Applications, 22(1):59-67.
  2. Besl, P. and McKay, N. (1992). A method for registration of 3-d shapes. IEEE Trans. on PAMI, 14(2):239-256.
  3. Blais, G. and Levine, M. D. (1995). Registering multiview range data to create 3d computer objects. IEEE Trans. on PAMI, 17(8):820-824.
  4. Chen, H. and Bhanu, B. (August 2004). 3d free-form object recognition in range images using local surface patches. In Proc. of the 17th Int. Conf. on Pattern Recognition, pages 524-530, Cambridge, UK.
  5. Chua, C. S. and Jarvis, R. (1997). Point signatures: A new representation for 3-d object recognition. International Journal of Computer Vision, 25(1):63-85.
  6. Correa, S. and Shapiro, L. (2001). A new signature-based method for efficient 3-d object recognition. In Proc. IEEE CVPR, volume 1, pages 769-776.
  7. Eggert, D. W., Lorusso, A., and Fisher, R. B. (1997). Estimating 3d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9:272-290.
  8. Fan, Y., Jiang, T., and Evans, D. (2002). Medical image registration using parallel genetic algorithms. LNCS (Applications of Evolutionary Computing), 2279:304- 314.
  9. Hemayed, E. (July 2003). A scalable approach for 3d mesh generation. In Proc. of the 7th World MultiConference on Systemics, Cybernetics and Informatics, Oralndo, FL.
  10. Ikeuchi, K. and Sato, Y., editors (2001). Modeling From Reality. Kluwer Academic Publishers.
  11. Johnson, J. and Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. on PAMI, 21(5):433-449.
  12. Okatani, I. and Sugimoto, A. (2004). Registration of range images that preserves local surface structures and color. In Proc. of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'04), pages 789-796.
  13. Robertson, C. and Fisher, R. (2002). Parallel evolutionary registration of range data. Computer Vision and Image Understanding, 87(1):39-50.
  14. Rusinliewicz, S. and Levoy, M. (2001). Efficient variants of the icp algorithm. In Proc. of the 3th Int. Conf. on 3-D Digital Imaging and Modeling , volume 1, pages 145-152.
  15. Sharp, G. C., Lee, S. W., and Wehe, D. K. (2002). ICP registration using invariant features. IEEE Trans. on PAMI, 24(1):90-102.
  16. Silva, L., Bellon, O. R. P., and Boyer, K. L. (2005). Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. on PAMI, 27(5):762-776.
  17. Stein, F. and Medioni, G. (1992). Structural indexing: efficient 3-d object recognition. IEEE Trans. on PAMI, 14(2):125-145.
  18. Sun, Y., Paik, J., Koschan, A., Page, D. L., and Abidi, M. A. (2003). Point fingerprint: A new 3-d object representation scheme. IEEE Trans. On Systems, Man and Cybernetics - Part B: Cybernetics , 33(4):712-717.
  19. Williams, J. and Bennamoun, M. (2001). Simultaneous registration of multiple corresponding point sets. Computer Vision and Image Understanding, 81(1):117- 142.
  20. Yamany, S. M. and Farag, A. A. (2002). Surface signatures: An orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Trans. on PAMI, 24(8):1105-1120.
  21. Zhang, D. and Herbert, M. (1999). Harmonic maps and their applications in surface matching. In Proc. IEEE Conf. CVPR, volume 2, pages 524-530.
  22. Zhang, H., Hall-Holt, O., and Kaufman, A. (June 2004). Range image registration via probability field. In Proc. of the Computer Graphics International, pages 546-552, Crete, Greece.
  23. Zhang, Z. (1994). Iterative point matching for registration of freeform curves and surfaces. IEEE Trans. on PAMI, 13(2):119-152.
Download


Paper Citation


in Harvard Style

E. Hemayed E. (2006). SURFACE REGISTRATION USING LOCAL SURFACE EXTENDED POLAR MAP . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, ISBN 972-8865-40-6, pages 143-148. DOI: 10.5220/0001375601430148


in Bibtex Style

@conference{visapp06,
author={Elsayed E. Hemayed},
title={SURFACE REGISTRATION USING LOCAL SURFACE EXTENDED POLAR MAP},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,},
year={2006},
pages={143-148},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001375601430148},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,
TI - SURFACE REGISTRATION USING LOCAL SURFACE EXTENDED POLAR MAP
SN - 972-8865-40-6
AU - E. Hemayed E.
PY - 2006
SP - 143
EP - 148
DO - 10.5220/0001375601430148