ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING
Alejandro Carrasco E., Peter Goldsmith
2007
Abstract
Visual tracking is an important part of artificial Vision for robotics. It allows robots to move towards a desired position using real world information. In this paper we present a novel particle filtering method for visual tracking, based on a clonal selection and a somatic mutation processes used by the natural immune system, which is excellent at identifying intrusion cells; antigens. This capability is used in this work to track motion of the object in a sequence of images.
References
- Macnab, C.J.B., D'Eleuterio, G.M.T., May 2000, Discretetime Lyapunov design for neuro-adaptive control of elastic-joint robots, International Journal of Robotics Research vol. 19, no. 5, pp. 511-525.
- Paul Charbonneau, 2002, An Introduction to Genetic Algorithms for Numerical Optimization, National Center for Atmospheric Research, Boulder, Colorado.
- Koichi Tashima, Zheng Tang, Okihiko Ishizuka, Koichi Tanno, 2001, An immune network with interactions between B cells for pattern recognition. Scripta Technica, Syst Comp Jpn, 32(10): 31-41.
- Ramirez-Serrano, A., and Pettinaro G.C., 2004, "Origami robotics: swarm robots that can fold into diverse configurations", Mechatronics2004, pp. 171-182, Ankara, Turkey, August 30 - September 1.
- Jerome T. Connor, R. Douglas Martin, 1994, Recurrent Neural Networks and Robust Time Series Prediction. IEEE Transactions on Neural Networks, Vol. 5 , No. 2.
- Dasgupta, D., Gonzalez, F., 2002, An immunity-based technique to characterize intrusions in computer networks, IEEE Trans. Evol. Comput. 6:1081-1088.
- Gibert, C. J. & Routen, T. W. 1994, Associative memory in an immune-based system. In: Proceedings of the Twelfth National Conference on Artificial Intelligence pp. 852-857, Cambridge, MA. AAAI Press/The MIT Press.
- de Castro, L. N. and Von Zuben, F. J., 2002, Learning and optimization using the clonal selection principle, IEEE Trans. Evol. Comput. Special issue on artificial immune systems, 6:239-251.
- Carl T. Bergstrom, Rustom Antia, 2004, How do adaptive immune systems control pathogens while avoiding autoimmunity? Department of Biology, University of Washington.
- E. Prassler, J. Scholz, M. Schuster, and D. Schwammkrug, June 1998, Tracking a large number of moving object in a crowded environment, Proceedings of the IEEE Workshop on Perception for Mobile Agents (Santa Barbara) (G. Dudek, M. Jenkin, and E. Milios, eds.), pp. 28-36.
- S.Carlsson and J.O. Eklundh, 1990, Object detection using model based prediction and motion parallax, Proceedings of the European Conference on Computer Vision (Antibes), Springer-Verlag, pp. 297-206.
- Gutman, P., Velger, M., 1990, Tracking Targets Using Adaptive Kalman Filtering, IEEE Transactions on Aerospace and Electronic Systems Vol. 26, No. 5: pp. 691-699.
- Welch, G, Bishop, G., 2001, An Introduction to the Kalman Filter, ACM, IGGRAPH 2001, Course8, www.cs.unc.edu/welch/kalman.
- Maria Isabel Ribeiro, 2004, Kalman and Extended Kalman Filters: Concept, Derivation and Properties. Institute for Systems and Robotics. Lisboa PORTUGAL.
- Simon J. Julier Jeffrey K. Uhlmann, 1997, A New Extension of the Kalman Filter to Nonlinear Systems. The Robotics Research Group, Department of Engineering Science, The University of Oxford.
- M. Isard and A. Blake, 1998, CONDENSATION: Conditional Density Propagation for visual tracking, International Journal of Computer Vision, Vol. 29, No. 1, pp. 5-28.
- M. Isard and A. Blake, 1996, Contour tracking by stochastic propagation of conditional density. In European Conference on Computer Vision, volume 1, pages 343-356.
- M. S. Grewal and A. P. Andrews, 1993, Kalman Filtering. Prentice Hall.
- Burnet, F. M., 1978, “Clonal Selection and After”, In Theoretical Immunology, (Eds.) G. I. Bell, A. S. Perelson & G. H. Pimbley Jr., Marcel Dekker Inc., 63- 85.
- Leandro Nunes de Castro, Fernando J. Von Zuben, 2002, The Clonal Selection Algorithm with Engineering Applications. School of Electrical and Computer Engineering, State University of Campinas, Brazil.
- G. Healey, R. Kondepudy, 1994,"Radiometric CCD camera calibration and noise estimation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 3, pp. 267-276.
- Foley, J., van Dan, A., Feiner, S., and Hughes, J., 1990,Computer Graphics: Principles and Practice, chapter 13, 563-604, Addison-Wesley.
Paper Citation
in Harvard Style
Carrasco E. A. and Goldsmith P. (2007). ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 978-972-8865-83-2, pages 280-285. DOI: 10.5220/0001630102800285
in Bibtex Style
@conference{icinco07,
author={Alejandro Carrasco E. and Peter Goldsmith},
title={ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2007},
pages={280-285},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001630102800285},
isbn={978-972-8865-83-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING
SN - 978-972-8865-83-2
AU - Carrasco E. A.
AU - Goldsmith P.
PY - 2007
SP - 280
EP - 285
DO - 10.5220/0001630102800285