ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING

Alejandro Carrasco E., Peter Goldsmith

2007

Abstract

Visual tracking is an important part of artificial Vision for robotics. It allows robots to move towards a desired position using real world information. In this paper we present a novel particle filtering method for visual tracking, based on a clonal selection and a somatic mutation processes used by the natural immune system, which is excellent at identifying intrusion cells; antigens. This capability is used in this work to track motion of the object in a sequence of images.

References

  1. Macnab, C.J.B., D'Eleuterio, G.M.T., May 2000, Discretetime Lyapunov design for neuro-adaptive control of elastic-joint robots, International Journal of Robotics Research vol. 19, no. 5, pp. 511-525.
  2. Paul Charbonneau, 2002, An Introduction to Genetic Algorithms for Numerical Optimization, National Center for Atmospheric Research, Boulder, Colorado.
  3. Koichi Tashima, Zheng Tang, Okihiko Ishizuka, Koichi Tanno, 2001, An immune network with interactions between B cells for pattern recognition. Scripta Technica, Syst Comp Jpn, 32(10): 31-41.
  4. Ramirez-Serrano, A., and Pettinaro G.C., 2004, "Origami robotics: swarm robots that can fold into diverse configurations", Mechatronics2004, pp. 171-182, Ankara, Turkey, August 30 - September 1.
  5. Jerome T. Connor, R. Douglas Martin, 1994, Recurrent Neural Networks and Robust Time Series Prediction. IEEE Transactions on Neural Networks, Vol. 5 , No. 2.
  6. Dasgupta, D., Gonzalez, F., 2002, An immunity-based technique to characterize intrusions in computer networks, IEEE Trans. Evol. Comput. 6:1081-1088.
  7. Gibert, C. J. & Routen, T. W. 1994, Associative memory in an immune-based system. In: Proceedings of the Twelfth National Conference on Artificial Intelligence pp. 852-857, Cambridge, MA. AAAI Press/The MIT Press.
  8. de Castro, L. N. and Von Zuben, F. J., 2002, Learning and optimization using the clonal selection principle, IEEE Trans. Evol. Comput. Special issue on artificial immune systems, 6:239-251.
  9. Carl T. Bergstrom, Rustom Antia, 2004, How do adaptive immune systems control pathogens while avoiding autoimmunity? Department of Biology, University of Washington.
  10. E. Prassler, J. Scholz, M. Schuster, and D. Schwammkrug, June 1998, Tracking a large number of moving object in a crowded environment, Proceedings of the IEEE Workshop on Perception for Mobile Agents (Santa Barbara) (G. Dudek, M. Jenkin, and E. Milios, eds.), pp. 28-36.
  11. S.Carlsson and J.O. Eklundh, 1990, Object detection using model based prediction and motion parallax, Proceedings of the European Conference on Computer Vision (Antibes), Springer-Verlag, pp. 297-206.
  12. Gutman, P., Velger, M., 1990, Tracking Targets Using Adaptive Kalman Filtering, IEEE Transactions on Aerospace and Electronic Systems Vol. 26, No. 5: pp. 691-699.
  13. Welch, G, Bishop, G., 2001, An Introduction to the Kalman Filter, ACM, IGGRAPH 2001, Course8, www.cs.unc.edu/welch/kalman.
  14. Maria Isabel Ribeiro, 2004, Kalman and Extended Kalman Filters: Concept, Derivation and Properties. Institute for Systems and Robotics. Lisboa PORTUGAL.
  15. Simon J. Julier Jeffrey K. Uhlmann, 1997, A New Extension of the Kalman Filter to Nonlinear Systems. The Robotics Research Group, Department of Engineering Science, The University of Oxford.
  16. M. Isard and A. Blake, 1998, CONDENSATION: Conditional Density Propagation for visual tracking, International Journal of Computer Vision, Vol. 29, No. 1, pp. 5-28.
  17. M. Isard and A. Blake, 1996, Contour tracking by stochastic propagation of conditional density. In European Conference on Computer Vision, volume 1, pages 343-356.
  18. M. S. Grewal and A. P. Andrews, 1993, Kalman Filtering. Prentice Hall.
  19. Burnet, F. M., 1978, “Clonal Selection and After”, In Theoretical Immunology, (Eds.) G. I. Bell, A. S. Perelson & G. H. Pimbley Jr., Marcel Dekker Inc., 63- 85.
  20. Leandro Nunes de Castro, Fernando J. Von Zuben, 2002, The Clonal Selection Algorithm with Engineering Applications. School of Electrical and Computer Engineering, State University of Campinas, Brazil.
  21. G. Healey, R. Kondepudy, 1994,"Radiometric CCD camera calibration and noise estimation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 3, pp. 267-276.
  22. Foley, J., van Dan, A., Feiner, S., and Hughes, J., 1990,Computer Graphics: Principles and Practice, chapter 13, 563-604, Addison-Wesley.
Download


Paper Citation


in Harvard Style

Carrasco E. A. and Goldsmith P. (2007). ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 978-972-8865-83-2, pages 280-285. DOI: 10.5220/0001630102800285


in Bibtex Style

@conference{icinco07,
author={Alejandro Carrasco E. and Peter Goldsmith},
title={ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2007},
pages={280-285},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001630102800285},
isbn={978-972-8865-83-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - ARTIFICIAL IMMUNE FILTER FOR VISUAL TRACKING
SN - 978-972-8865-83-2
AU - Carrasco E. A.
AU - Goldsmith P.
PY - 2007
SP - 280
EP - 285
DO - 10.5220/0001630102800285