BENCHMARKING HAAR AND HISTOGRAMS OF ORIENTED GRADIENTS FEATURES APPLIED TO VEHICLE DETECTION

Pablo Negri, Xavier Clady, Lionel Prevost

2007

Abstract

This paper provides a comparison between two of the most used visual descriptors (image features) nowadays in the field of object detection. The investigated image features involved the Haar filters and the Histogram of Oriented Gradients (HoG) applied for the on road vehicle detection. Tests are very encouraging with a average detection of 96% on realistic on-road vehicle images.

References

  1. Agarwal, S., Awan, A., and Roth, D. (2004). Learning to detect objects in images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1475-1490.
  2. Bensrhair, A., Bertozzi, M., Broggi, A., Miche, P., Mousset, S., and Toulminet, G. (2001). A cooperative approach to vision-based vehicle detection. In Proceedings on Intelligent Transportation Systems, pages 207-212.
  3. Bertozzi, M. and Broggi, A. (1997). Vision-based vehicle guidance. Computer, 30(7):49-55.
  4. Bertozzi, M., Broggi, A., and Castelluccio, S. (1997). A real-time oriented system for vehicle detection. Journal of Systems Architecture, 43(1-5):317-325.
  5. Bucher, T., Curio, C., Edelbrunner, J., Igel, C., Kastrup, D., Leefken, I., Lorenz, G., Steinhage, A., and von Seelen, W. (2003). Image processing and behavior planning for intelligent vehicles. IEEE Transactions on Industrial Electronics, 50(1):62-75.
  6. Cha, S. and Srihari, S. N. (2002). On measuring the distance between histograms. Pattern Recognition, 35(6):1355-1370.
  7. Collado, J., Hilario, C., de la Escalera, A., and Armingol, J. (2004). Model based vehicle detection for intelligent vehicles. In International Symposium on Intelligent Vehicles, pages 572-577.
  8. Dellaert, F. (1997). Canss: A candidate selection and search algorithm to initialize car tracking. Technical report, Robotics Institute, Carnegie Mellon University.
  9. Demonceaux, C., Potelle, A., and Kachi-Akkouche, D. (2004). Obstacle detection in a road scene based on motion analysis. IEEE Transactions on Vehicular Technology, 53(6):1649 - 1656.
  10. Franke, U. (2000). Real-time stereo vision for urban traffic scene understanding. In Proceedings IEEE Intelligent Vehicles Symposium 2000, pages 273-278, Detroit, USA.
  11. Freund, Y. and Schapire, R. (1996). Experiments with a new boosting algorithm. In International Conference on Machine Learning, pages 148-156.
  12. Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28(2):337-374.
  13. Gepperth, A., Edelbrunner, J., and Bocher, T. (2005). Realtime detection and classification of cars in video sequences. In Intelligent Vehicles Symposium, pages 625-631.
  14. Guo, D., Fraichard, T., Xie, M., and Laugier, C. (2000). Color modeling by spherical influence field in sensing drivingenvironment. In IEEE, editor, Intelligent Vehicles Symposium, pages 249-254, Dearborn, MI, USA.
  15. Lowe, D. (1999). Object recognition from local scaleinvariant features. In Proceedings of the International Conference on Computer Vision, pages 1150-1157.
  16. Papageorgiou, C. and Poggio, T. (1999). A trainable object detection system: Car detection in static images. Technical report, MIT AI Memo 1673 (CBCL Memo 180).
  17. Schneiderman, H. and Kanade, T. (2000). A statistical method for 3d object detection applied to faces and cars. In ICCVPR, pages 746-751.
  18. Srinivasa, N. (2002). Vision-based vehicle detection and tracking method for forward collision warning in automobiles. In IEEE Intelligent Vehicle Symposium, volume 2, pages 626-631.
  19. Sun, Z., Bebis, G., and Miller, R. (2004). Object detection using feature subset selection. Pattern Recognition, 37(11):2165-2176.
  20. Sun, Z., Bebis, G., and Miller, R. (2006). On-road vehicle detection: A review. IEEE Trans. Pattern Anal. Mach. Intell., 28(5):694-711.
  21. van Leeuwen, M. and Groen, F. (2001). Vehicle detection with a mobile camera. Technical report, Computer Science Institute, University of amsterdam, The Netherlands.
  22. Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Conference on Computer Vision and Pattern Recognition, pages 511-518.
  23. Xiong, T. and Debrunner, C. (2004). Stochastic car tracking with line- and color-based features. Advances and Trends in Research and Development of Intelligent Transportation Systems: An Introduction to the Special Issue, 5(4):324-328.
  24. Yang, H., Lou, J., Sun, H., Hu, W., and Tan, T. (2001). Efficient and robust vehicle localization. In International Conference on Image Processing, volume 2, pages 355-358, Thessaloniki, Greece.
Download


Paper Citation


in Harvard Style

Negri P., Clady X. and Prevost L. (2007). BENCHMARKING HAAR AND HISTOGRAMS OF ORIENTED GRADIENTS FEATURES APPLIED TO VEHICLE DETECTION . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 2: IVCS, (ICINCO 2007) ISBN 978-972-8865-83-2, pages 359-364. DOI: 10.5220/0001637503590364


in Bibtex Style

@conference{ivcs07,
author={Pablo Negri and Xavier Clady and Lionel Prevost},
title={BENCHMARKING HAAR AND HISTOGRAMS OF ORIENTED GRADIENTS FEATURES APPLIED TO VEHICLE DETECTION},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 2: IVCS, (ICINCO 2007)},
year={2007},
pages={359-364},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001637503590364},
isbn={978-972-8865-83-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 2: IVCS, (ICINCO 2007)
TI - BENCHMARKING HAAR AND HISTOGRAMS OF ORIENTED GRADIENTS FEATURES APPLIED TO VEHICLE DETECTION
SN - 978-972-8865-83-2
AU - Negri P.
AU - Clady X.
AU - Prevost L.
PY - 2007
SP - 359
EP - 364
DO - 10.5220/0001637503590364