HIGHER ORDER SLIDING MODE STABILIZATION OF A CAR-LIKE MOBILE ROBOT
F. Hamerlain, K. Achour, T. Floquet, W. Perruquetti
2007
Abstract
This paper deals with the robust stabilization of a car-like mobile robot given in a perturbed chained form. A higher order sliding mode control strategy is developed. This control strategy switches between two different sliding mode controls: a second order one (super-twisting algorithm) and a new third order sliding mode control that performs a finite time stabilization. The proposed third sliding mode controller is based on geometric homogeneity property with a discontinuous term. Simulation results show the control performance.
References
- Astolfi A. (1996). Discontinuous control of nonholonomic systems, Systems & Control Letters Vol. 27, pp. 37- 45.
- Barbot J.-P., Djemai M., Floquet T. and Perruquetti W. (2003). Stabilization of a unicycle-type mobile robot using higher order sliding mode control. In Proc. of the 41st IEEE Conference on Decision and Control.
- Bhat, S. and Bernstein, D. (2005). Geometric Homogeneity with applications to finite time stability. Mathematics of Control, Signals and Systems, Vol. 17, pp. 101-127.
- Brockett, R. (1983). Asymptotic stability and feedback stabilization. In Differential geometric control theory, pp. 181-191, Birkhauser.
- Djemai M. and Barbot J.-P. (2002). Smooth manifolds and high order sliding mode control. In Proc. of the 41st IEEE Conference on Decision and Control.
- Edwards C. and Spurgeon S. (1998). Sliding mode control: theory and applications. Taylor and Francis Eds.
- Emel'yanov S.V., Korovin S.V., and Levantovsky L.V. (1993). Higher order sliding modes in control systems. Differential Equations, Vol. 29, pp. 1627-1647.
- Floquet T., Barbot J.-P. and Perruquetti W. (2000). Onechained form and sliding mode stabilization for a nonholonomic perturbed system. American Control Conference, Chicago, USA.
- Floquet T., Barbot J.-P. and Perruquetti W. (2003). Higher order sliding mode stabilization for a class of non holonomic perturbed system. Automatica, Vol. 39, pp. 1077-1083.
- Fliess M., Levine J., Martin P. and Rouchon P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples. International Journal on Control, Vol.61, pp. 1327-1361.
- Fridman L. and Levant A. (2002). Higher order sliding modes. In Sliding Mode Control in Engineering, W. Perruquetti and J. P. Barbot (Eds), Marcel Dekker, pp. 53-101.
- Huo W. and Ge S. (2001). Exponential stabilization of nonhononomic systems: an ENI approach. International Journal of Control, Vol. 74, 1492-1500.
- Jiang, Z. and Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Tansactions on Automatic Control, Vol. 44, pp. 265-279.
- Laghrouche S., Smaoui M. and Plestan F. (2004). Thirdorder sliding mode controller for electropneumatic actuators. In Proc. of the 43rd IEEE Conference on Decision and Control.
- Levant, A. (2001). Universal SISO sliding-mode controllers with finite-time convergence. IEEE Transactions on Automatic Control, Vol. 46, pp. 1447-1451.
- Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, Vol. 76, pp. 924-941.
- Murray R. and Sastry S. (1993). Nonholonomic motion planning :steering using sinusoids. IEEE. Tansactions On Automatic Control, Vol. 38, pp. 77-716.
- Murray R., Li Z. and Sastry S. (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Florida, USA.
- Perruquetti W. and Barbot J.-P. (Editors) (2002), Sliding Mode Control in Engineering, Marcel Dekker.
- Samson C. (1995). Control of chained systems. Application to path following and time-varying point stabilization of mobile robots. IEEE Tansactions on Automatic Control, Vol. 40, pp. 64-77.
Paper Citation
in Harvard Style
Hamerlain F., Achour K., Floquet T. and Perruquetti W. (2007). HIGHER ORDER SLIDING MODE STABILIZATION OF A CAR-LIKE MOBILE ROBOT . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 978-972-8865-83-2, pages 195-200. DOI: 10.5220/0001639901950200
in Bibtex Style
@conference{icinco07,
author={F. Hamerlain and K. Achour and T. Floquet and W. Perruquetti},
title={HIGHER ORDER SLIDING MODE STABILIZATION OF A CAR-LIKE MOBILE ROBOT},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2007},
pages={195-200},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001639901950200},
isbn={978-972-8865-83-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - HIGHER ORDER SLIDING MODE STABILIZATION OF A CAR-LIKE MOBILE ROBOT
SN - 978-972-8865-83-2
AU - Hamerlain F.
AU - Achour K.
AU - Floquet T.
AU - Perruquetti W.
PY - 2007
SP - 195
EP - 200
DO - 10.5220/0001639901950200