COMPARING COMBINATIONS OF FEATURE REGIONS FOR PANORAMIC VSLAM

Arnau Ramisa, Ramón López de Mántaras, David Aldavert, Ricardo Toledo

2007

Abstract

Invariant (or covariant) image feature region detectors and descriptors are useful in visual robot navigation because they provide a fast and reliable way to extract relevant and discriminative information from an image and, at the same time, avoid the problems of changes in illumination or in point of view. Furthermore, complementary types of image features can be used simultaneously to extract even more information. However, this advantage always entails the cost of more processing time and sometimes, if not used wisely, the performance can be even worse. In this paper we present the results of a comparison between various combinations of region detectors and descriptors. The test performed consists in computing the essential matrix between panoramic images using correspondences established with these methods. Different combinations of region detectors and descriptors are evaluated and validated using ground truth data. The results will help us to find the best combination to use it in an autonomous robot navigation system.

References

  1. Booij, O., Zivkovic, Z., and Kröse, B. (2006). From sensors to rooms. In Proc. IROS Workshop From Sensors to Human Spatial Concepts, pages 53-58. IEEE.
  2. Castellanos, J. A. and Tardos, J. D. (2000). Mobile Robot Localization and Map Building: A Multisensor Fusion Approach. Kluwer Academic Publishers, Norwell, MA, USA.
  3. Lindeberg, T. (1998). Feature detection with automatic scale selection. Int. J. Comput. Vision, 30(2):79-116.
  4. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Interantional Journal of Computer Vision, 60(2):91-110.
  5. Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In Proceedings of the British Machine Vision Conference 2002, BMVC 2002, Cardiff, UK, 2-5 September 2002. British Machine Vision Association.
  6. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence, 27(10):1615-1630.
  7. Ramisa, A., Aldavert, D., and Toledo, R. (2006). A panorama based localization system. In 1st CVC Research and Development Workshop, 2006, pages 36- 41. Computer Vision Center.
  8. Se, S., Lowe, D., and Little, J. (2001). Vision-based mobile robot localization and mapping using scaleinvariant features. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 2051-2058, Seoul, Korea.
  9. Tapus, A. and Siegwart, R. (2006). A cognitive modeling of space using fingerprints of places for mobile robot navigation. In Proceedings the IEEE International Conference on Robotics and Automation (ICRA), Orlando, U.S.A., May 2006.
  10. Thrun, S. (2002). Robotic mapping: A survey. In Lakemeyer, G. and Nebel, B., editors, Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann.
  11. Tomatis, N., Nourbakhsh, I., and Siegwart, R. (2002). Hybrid simultaneous localization and map building: Closing the loop with multi-hypotheses tracking. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Washington DC, USA, May 2002.
Download


Paper Citation


in Harvard Style

Ramisa A., López de Mántaras R., Aldavert D. and Toledo R. (2007). COMPARING COMBINATIONS OF FEATURE REGIONS FOR PANORAMIC VSLAM . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 978-972-8865-83-2, pages 292-297. DOI: 10.5220/0001642602920297


in Bibtex Style

@conference{icinco07,
author={Arnau Ramisa and Ramón López de Mántaras and David Aldavert and Ricardo Toledo},
title={COMPARING COMBINATIONS OF FEATURE REGIONS FOR PANORAMIC VSLAM},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2007},
pages={292-297},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001642602920297},
isbn={978-972-8865-83-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - COMPARING COMBINATIONS OF FEATURE REGIONS FOR PANORAMIC VSLAM
SN - 978-972-8865-83-2
AU - Ramisa A.
AU - López de Mántaras R.
AU - Aldavert D.
AU - Toledo R.
PY - 2007
SP - 292
EP - 297
DO - 10.5220/0001642602920297