A GROWING FUNCTIONAL MODULE DESIGNED TO TRIGGER CAUSAL INFERENCE
Jérôme Leboeuf Pasquier
2007
Abstract
“Growing Functional Modules” constitutes a prospective paradigm founded on the epigenetic approach whose proposal consists in designing a distributed architecture, based on interconnected modules, that allows the automatic generation of an autonomous and adaptive controller (artificial brain). The present paper introduces a new module designed to trigger causal inference; its functionality is discussed and its behavior is illustrated applying the module to solve the problem of a dynamic maze.
References
- Piaget, J., 1970. Genetic Epistemology. Series of Lectures, Columbia University Press, Columbia, New York.
- Wai-Ki, C. & Michael, K.N., 2006. Markov Chains: Models, Algorithms and Applications. Springer Eds.
- Jansen, F.V., 2001. Bayesian Networks and Decision Graphs, Springer Eds.
- Leboeuf, J., 2005. Growing Functional Modules, a Prospective Paradigm for Epigenetic Artificial Intelligence. Lecture Notes in Computer Science 3563. Springer, pp. 465-471.
- Leboeuf, J., 2006. A Growing Functional Module Designed to Perform Basic Real Time Automatic Control. Publication pending in Lecture Notes in Computer Science, Springer.
- Leboeuf, J., 2006. Improving the RTR Growing Functional Module. Proceedings of the 32nd Annual Conference of the IEEE Industrial Electronics Society, IECON'06 Paris, pp. 3945-3950.
- Leboeuf, J., 2005. Applying the GFM Prospective Paradigm to the Autonomous and Adaptive Control of a Virtual Robot. Lecture Notes in Artificial Intelligence, Springer 3789, pp. 959-969.
- Dijkstra, E.W., 1959. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, pp. 269-271.
- Fredman, M.L. & Tarjan, R.E., 1987. Fibonacci Heaps and their Use in Improved Network Optimization. Journal of the ACM Vol. 34, pp 596-615.
- Matias, Y., Vitter J.S. &Young, N.E., 1994. Approximate Data Structure with Applications. Proceedings of the ACM-SIAM Symposium, pp. 187-194
- Cooper, C., Frieze, A., Mehlhorn, K. & Priebe, V., 2000, Average-Case Complexity of Shortest Path Problems in the Vertex-Potential Model.
- Anderson, J.R., 1999. Learning and Memory, an Integrated Approach. Wiley Eds.
Paper Citation
in Harvard Style
Leboeuf Pasquier J. (2007). A GROWING FUNCTIONAL MODULE DESIGNED TO TRIGGER CAUSAL INFERENCE . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-972-8865-82-5, pages 456-463. DOI: 10.5220/0001643704560463
in Bibtex Style
@conference{icinco07,
author={Jérôme Leboeuf Pasquier},
title={A GROWING FUNCTIONAL MODULE DESIGNED TO TRIGGER CAUSAL INFERENCE},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2007},
pages={456-463},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001643704560463},
isbn={978-972-8865-82-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A GROWING FUNCTIONAL MODULE DESIGNED TO TRIGGER CAUSAL INFERENCE
SN - 978-972-8865-82-5
AU - Leboeuf Pasquier J.
PY - 2007
SP - 456
EP - 463
DO - 10.5220/0001643704560463