PARALLEL GABOR PCA WITH FUSION OF SVM SCORES FOR FACE VERIFICATION

Ángel Serrano, Cristina Conde, Isaac Martín de Diego, Enrique Cabello, Li Bai, Linlin Shen

2007

Abstract

Here we present a novel fusion technique for support vector machine (SVM) scores, obtained after a dimension reduction with a principal component analysis algorithm (PCA) for Gabor features applied to face verification. A total of 40 wavelets (5 frequencies, 8 orientations) have been convolved with public domain FRAV2D face database (109 subjects), with 4 frontal images with neutral expression per person for the SVM training and 4 different kinds of tests, each with 4 images per person, considering frontal views with neutral expression, gestures, occlusions and changes of illumination. Each set of wavelet-convolved images is considered in parallel or independently for the PCA and the SVM classification. A final fusion is performed taking into account all the SVM scores for the 40 wavelets. The proposed algorithm improves the Equal Error Rate for the occlusion experiment compared to a Downsampled Gabor PCA method and obtains similar EERs in the other experiments with fewer coefficients after the PCA dimension reduction stage.

References

  1. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J., 2002. Face recognition by independent component analysis. IEEE Transactions on Neural Networks, Vol. 13, No. 6, pp. 1450-1464.
  2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J, 1997. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE PAMI, Vol. 19, No. 7, pp. 711-720.
  3. Chung, K.-C., Kee, S.C., Kim, S.R., 1999. Face Recognition using Principal Component Analysis of Gabor Filter Responses. International Workshop on Recognition, Analysis and Tracking of Faces and Gestures in Real-Time Systems, pp. 53-57.
  4. Daugman, J.G., 1985. Uncertainty relation for resolution in space, spatial-frequency and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A: Optics Image Science and Vision, Vol. 2, Issue 7, pp. 1160-1169.
  5. Fan, W., Wang, Y., Liu, W., Tan, T., 2004. Combining Null Space-Based Gabor Features for Face Recognition, 17th International Conference on Pattern Recognition ICPR'04, Vol. 1, pp. 330-333.
  6. FRAV2D Face Database Website, 2004. http://frav.escet.urjc.es/ databases/FRAV2D/
  7. Lades, M., Vorbrüggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R.P., Konen, W., 1993. Distortion invariant object recognition in the Dynamic Link Architecture, IEEE Transactions on Computers, Vol. 42, No. 3, pp. 300-311.
  8. Liu, C.J., Wechsler, H., 2002. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition, IEEE Transactions on Image Processing, Vol. 11, Issue 4, pp. 467-476.
  9. Philips, P.J., Moon, H., Rauss, P.J., Rizvi, S, 2000. The FERET evaluation methodology for face recognition algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, pp. 1090- 1104.
  10. Qin, J., He, Z.-S., 2005. A SVM face recognition method based on Gabor-featured key points, 4th International Conference on Machine Learning and Cybernetics, Vol. 8, pp. 5144-5149.
  11. Shen, L., Bai, L., 2004, Face recognition based on Gabor features using kernel methods, 6th IEEE Conference on Face and Gesture Recognition, pp. 170-175
  12. Shen, L., Bai, L., 2006, A review on Gabor wavelets for face recognition. Pattern Analysis & Applications, Vol. 9, Issues 2-3, pp. 273-292.
  13. Turk, M., Pentland, A., 1991. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, Vol. 3, Issue 1, pp. 71-86.
  14. Vapnik, V.N., 1995. The Nature of Statistical Learning Theory, Springer Verlag.
  15. Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C., 1997. Face recognition by Elastic Bunch Graph Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, Issue 7, pp. 775-779.
  16. Zhang, W., Shan, S., Gao, W., Chang, Y., Cao, B., Yang, P., 2004. Information Fusion in Face Identification, 17th International Conference on Pattern Recognition ICPR'04, Vol. 3, pp. 950-953.
Download


Paper Citation


in Harvard Style

Serrano Á., Conde C., Martín de Diego I., Cabello E., Bai L. and Shen L. (2007). PARALLEL GABOR PCA WITH FUSION OF SVM SCORES FOR FACE VERIFICATION . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, ISBN 978-972-8865-74-0, pages 149-154. DOI: 10.5220/0002055501490154


in Bibtex Style

@conference{visapp07,
author={Ángel Serrano and Cristina Conde and Isaac Martín de Diego and Enrique Cabello and Li Bai and Linlin Shen},
title={PARALLEL GABOR PCA WITH FUSION OF SVM SCORES FOR FACE VERIFICATION},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,},
year={2007},
pages={149-154},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002055501490154},
isbn={978-972-8865-74-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,
TI - PARALLEL GABOR PCA WITH FUSION OF SVM SCORES FOR FACE VERIFICATION
SN - 978-972-8865-74-0
AU - Serrano Á.
AU - Conde C.
AU - Martín de Diego I.
AU - Cabello E.
AU - Bai L.
AU - Shen L.
PY - 2007
SP - 149
EP - 154
DO - 10.5220/0002055501490154