FACE ANALYSIS FOR HUMAN COMPUTER INTERACTION APPLICATIONS

Javier Ruiz-del-Solar, Rodrigo Verschae, Paul Vallejos, Mauricio Correa

2007

Abstract

A face analysis system is presented and employed in the construction of human-computer interfaces. This system is based on three modules (detection, tracking and classification) which are integrated and used to detect, track and classify faces in dynamic environments. A face detector, an eye detector and face classifier are built using a unified learning framework. The most interesting aspect of this learning framework is the possibility of building accurate and robust classification/detection systems that have a high processing speed. The tracking system is based on extended Kalman filters, and when used together with the face detector, high detection rates with a very low false positive rate are obtained. The classification module is used to classify the faces’ gender. The three modules are evaluated on standard databases and, compared to state of the art systems, better or competitive results are obtained. The whole system is and the system is implemented in AIBO robots.

References

  1. BioID, 2005.Face Database. Available on August 2005 in: http://www.bioid.com/downloads/facedb/index.php
  2. Cristinacce, D. and Cootes, T., 2003. “A Comparison of two Real-Time Face Detection Methods”, 4th IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance - PETS 2003, pp. 1-8, Graz, Austria.
  3. Fröba, B. and Küblbeck, Ch., 2002. Robust face detection at video frame rate based on edge orientation features. 5th Int. Conf. on Automatic Face and Gesture Recognition FG - 2002, pp. 342-347.
  4. Fröba, B. and Ernst, A., 2004. “Face detection with the modified census transform”, 6th Int. Conf. on Face and Gesture Recognition - FG 2004, pp. 91-96, Korea.
  5. Delakis, M. and Garcia, C., 2004. “Convolutional face finder: A neural architecture for fast and robust face detection”, IEEE Trans. Pattern Anal. Mach. Intell., 26(11):1408 - 1423.
  6. Dudek, G., and Jenkin, M., 2002. Computational Principles of Mobile Robotics, Cambridge University Press.
  7. Isard, M., and Blake, A., 1998. “Condensation - Conditional Density Propagation for Visual Tracking”, Int. J. of Computer Vision, Vol. 29, N. 1, pp. 5-28.
  8. Lastra, R., Vallejos, P., and J. Ruiz-del-Solar, 2004. “Integrated Self-Localization and Ball Tracking in the Four-Legged Robot Soccer League”, 1st IEEE Latin American Robotics Symposium - LARS 2004, pp. 54 - 59, Oct. 28 - 29, México City, México.
  9. Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., Zhang, H.J. and Shum, H., 2002. “Statistical Learning of Multi-view Face Detection”, 7th European Conf. on Computer Vision - ECCV 2002, (Lecture Notes in Computer Science; Vol. 2353), pp. 67 - 81.
  10. PETS, 2003. Home Page. Available on August 2005 in: http://www.cvg.cs.rdg.ac.uk/PETS-ICVS/pets-icvsdb.html
  11. Phillips, P. J., Wechsler, H., Huang, J.and Rauss, P., 1998. “The FERET database and evaluation procedure for face recognition algorithms,” Image and Vision Computing J., Vol. 16, no. 5, pp. 295-306.
  12. Rowley, H., Baluja, S. and Kanade, T., 1998. “Neural Network-Based Detection”, IEEE Trans. Pattern Anal. Mach. Intell., Vol.20, No. 1, 23-28.
  13. Ruiz-del-Solar, J., Vallejos, P., Lastra, R., Loncomilla, P., Zagal, J.C., Morán, C., and Sarmiento, I., 2005b. “UChile1 2005 Team Description Paper”, RoboCup 2005 Symposium, July 13 - 17, Osaka, Japan.
  14. Schapire, R.E. and Singer, Y., 1999. Improved Boosting Algorithms using Confidence-rated Predictions, Machine Learning, 37(3):297-336.
  15. Schneiderman, H., 2004. Feature-Centric Evaluation for Efficient Cascade Object Detection, IEEE Conference of Computer Vision and Pattern Recognition - CVPR 2004, pp. 29 - 36.
  16. Sung, K. and Poggio, T., 1998. “Example-Based Learning for Viewed-Based Human Face Deteccion”, IEEE Trans. Pattern Anal. Mach. Intell., Vol.20, N. 1, 39-51.
  17. UCHFACE, 2005. Computational Vision Group, Universidad de Chile. Available on August 2005 in: http://vision.die.uchile.cl/
  18. Verschae, R. and Ruiz-del-Solar, J., 2003. “A Hybrid Face Detector based on an Asymmetrical Adaboost Cascade Detector and a Wavelet-Bayesian-Detector”, Lecture Notes in Computer Science 2686 (IWANN 2003), Springer, pp. 742-749, Menorca, Spain.
  19. Verschae, R., Ruiz-del-Solar, J., Correa, M., 2006a. Gender Classification of Faces Using Adaboost, In Proc of CIARP, LNCS 4225.
  20. Verschae, R., Ruiz-del-Solar, J., Correa, M. and Vallejos, P. 2006b. A Unified Learning Framework for Face, Eyes and Gender Detection using Nested Cascades of Boosted Classifiers, Tech.Report UCH-DIE-VISION2006-02, Dept. of Elect. Eng., Universidad de Chile.
  21. Viola, P. and Jones, M., 2001. "Rapid object detection using a boosted cascade of simple features", IEEE Conf. on Computer Vision and Pattern Recognition - CVPR, Kauai, HI, USA, 2001, pp. 511 - 518.
  22. Wu, B., AI, H. , Huang, C. and Lao, S., 2004. “Fast rotation invariant multi-view face detection based on real Adaboost”, 6th Int. Conf. on Face and Gesture Recognition - FG 2004, pp. 79-84, Seoul, Korea.
Download


Paper Citation


in Harvard Style

Ruiz-del-Solar J., Verschae R., Vallejos P. and Correa M. (2007). FACE ANALYSIS FOR HUMAN COMPUTER INTERACTION APPLICATIONS . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Human Presence Detection for Context-aware Systems, (VISAPP 2007) ISBN 978-972-8865-75-7, pages 23-30. DOI: 10.5220/0002069400230030


in Bibtex Style

@conference{human presence detection for context-aware systems07,
author={Javier Ruiz-del-Solar and Rodrigo Verschae and Paul Vallejos and Mauricio Correa},
title={FACE ANALYSIS FOR HUMAN COMPUTER INTERACTION APPLICATIONS},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Human Presence Detection for Context-aware Systems, (VISAPP 2007)},
year={2007},
pages={23-30},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002069400230030},
isbn={978-972-8865-75-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: Human Presence Detection for Context-aware Systems, (VISAPP 2007)
TI - FACE ANALYSIS FOR HUMAN COMPUTER INTERACTION APPLICATIONS
SN - 978-972-8865-75-7
AU - Ruiz-del-Solar J.
AU - Verschae R.
AU - Vallejos P.
AU - Correa M.
PY - 2007
SP - 23
EP - 30
DO - 10.5220/0002069400230030