3D SPATIAL DATA MINING ON DOCUMENT SETS FOR THE DISCOVERY OF FAILURE CAUSES IN COMPLEX TECHNICAL DEVICES

Timo Götzelmann, Knut Hartmann, Andreas Nürnberger, Thomas Strothotte

2007

Abstract

The retrospective fault analysis of complex technical devices based on documents emerging in the advanced steps of the product life cycle can reveal error sources and problems, which have not been discovered by simulations or other test methods in the early stages of the product life cycle. This paper presents a novel approach to support the failure analysis through (i) a semi-automatic analysis of databases containing product-related documents in natural language (e. g., problem and error descriptions, repair and maintenance protocols, service bills) using information retrieval and text mining techniques and (ii) an interactive exploration of the data mining results. Our system supports visual data mining by mapping the results of analyzing failure-related documents onto corresponding 3D models. Thus, visualization of statistics about failure sources can reveal problem sources resulting from problematic spatial configurations.

References

  1. Agrawal, R., Imielienski, T., and Swami, A. (1993). Mining Association Rules between Sets of Items in Large Databases. In Conf. on Management of Data, pages 207-216.
  2. Bernhardsen, T. (2002). Geographic Information Systems. John Wiley and Sons.
  3. Berthold, M. R. and Hand, D. J., editors (2003). Intelligent Data Analysis, An Introduction. Springer, 2nd edition.
  4. Borgelt, C. (2003). Efficient Implementations of Apriori and Eclat. In 1st WS of Frequent Item Set Mining Implementations (FIMI).
  5. Diepstraten, J., Weiskopf, D., and Ertl, T. (2002). Transparency in interactive technical illustrations.
  6. Ester, M., Frommelt, A., Kriegel, H.-P., and Sander, J. (2000). Spatial Data Mining: Database Primitives, Algorithms and Efficient DBMS Support. Data Mining Knowledge Discovery, 4(2/3):193-216.
  7. Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA.
  8. Flavin, P. G. and Totton, K. A. (1996). Computer Aided Decision Support in Telecommunications. BT Telecomm. Series. Chapman Hall Publishers, London.
  9. Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J. (1992). Knowledge Discovery in Databases: An Overview. AI Magazine, 13(3):57-70.
  10. Gooch, B. and Gooch, A. (2001). Rendering. A. K. Pteres, Natick.
  11. Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT Press, Cambridge.
  12. Hartmann, K., Schlechtweg, S., Helbing, R., and Strothotte, T. (2002). Knowledge-Supported Graphical Illustration of Texts. In Int. Working Conf. on Advanced Visual Interfaces, pages 300-307.
  13. Hartmann, K. and Strothotte, T. (2002). A Spreading Activation Approach to Text Illustration. In 2nd Int. Symp. on Smart Graphics, pages 39-46.
  14. Hipp, J., Güntzer, U., and Nakhaeizadeh, G. (2002). Data Mining of Association Rules and the Process of Knowledge Discovery in Databases. In Industrial Conference on Data Mining, pages 15-36.
  15. Hotho, A., Nürnberger, A., and Paaß, G. (2005). A Brief Survey of Text Mining. GLDV-Journal for Comp. Linguistics and Language Technology, 20(1):19-62.
  16. Keim, D. A. (2002). Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Compututer Graphics, 7(1):100-107.
  17. McDonald, J. M., Brossette, S., and Moser, S. A. (1998). Pathology Information Systems: Data Mining Leads to Knowledge Discovery. Archives of Pathology & Laboratory Medicine in Health & Fitness, 122(5):409-411.
  18. Miller, H. J. and Han, J., editors (2001). Geographic Data Mining and Knowledge Discovery. Taylor & Francis, London.
  19. Moore, G. W. and Berman, J. J. (2000). Anatomic Pathology Data Mining. In Cios, K. J., editor, Medical Data Mining and Knowledge Discovery, pages 61- 107. Springer Verlag, Berlin.
  20. Orfor, S., Dorling, D., and Harris, R. (1997). Review of Visualization in the Social Sciences: A State of the Art Survey and Report. Technical report, School of Geographical Sciences, University of Bristol, UK.
  21. Salton, G., Allan, J., Buckley, C., and Singhal, A. (1994). Automatic Analysis, Theme Generation, and Summarization of Machine-Readable Texts. Science, 264:1421-1426.
  22. Salton, G., Wong, A., and Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Communications of the ACM, 18(11):613-620.
  23. Schmidt, V. S. (1998). Turning Telecommunication Data into Accessible Information with SDE and Data Visualization Tools. In ESRI Europ. User Group Conf.
  24. Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visualization. In IEEE Symp. on Visual Languages, pages 336-343.
  25. Strothotte, T. and Schlechtweg, S. (2002). NonPhotorealistic Computer Graphics: Modeling, Rendering, and Animation. Morgan Kaufman, Los Altos.
  26. Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison-Wesley.
  27. Tufte, E. R. (1997). Visual Explanations: Images and Quantitatives, Evidence and Narrative. Graphics Press, Cheshire, Connecticut.
  28. Viola, I., Kanitsar, A., and Gröller, M. E. (2004). Importance-driven volume rendering. In Proceedings of IEEE Visualization'04, pages 139-145.
  29. Witten, I. H. and Frank, E. (1999). Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann.
  30. Zaki, M., Parthasarathy, S., Ogihara, M., and Li, W. (1997). New Algorithms for Fast Discovery of Association Rules. In 3rd Int. Conf. on Knowledge Discovery and Data Mining (KDD), pages 283-296.
  31. Zienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method. Vol 2: Solid Mechanics. Butterworth-Heinemann, Oxford, 5th edition.
Download


Paper Citation


in Harvard Style

Götzelmann T., Hartmann K., Nürnberger A. and Strothotte T. (2007). 3D SPATIAL DATA MINING ON DOCUMENT SETS FOR THE DISCOVERY OF FAILURE CAUSES IN COMPLEX TECHNICAL DEVICES . In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 2: GRAPP, ISBN 978-972-8865-72-6, pages 137-145. DOI: 10.5220/0002082101370145


in Bibtex Style

@conference{grapp07,
author={Timo Götzelmann and Knut Hartmann and Andreas Nürnberger and Thomas Strothotte},
title={3D SPATIAL DATA MINING ON DOCUMENT SETS FOR THE DISCOVERY OF FAILURE CAUSES IN COMPLEX TECHNICAL DEVICES},
booktitle={Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 2: GRAPP,},
year={2007},
pages={137-145},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002082101370145},
isbn={978-972-8865-72-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 2: GRAPP,
TI - 3D SPATIAL DATA MINING ON DOCUMENT SETS FOR THE DISCOVERY OF FAILURE CAUSES IN COMPLEX TECHNICAL DEVICES
SN - 978-972-8865-72-6
AU - Götzelmann T.
AU - Hartmann K.
AU - Nürnberger A.
AU - Strothotte T.
PY - 2007
SP - 137
EP - 145
DO - 10.5220/0002082101370145