INTERACTIVE DEFORMATION AND VISUALIZATION OF LARGE VOLUME DATASETS

Florian Schulze, Katja Bühler, Markus Hadwiger

2007

Abstract

This paper presents an integrated approach for interactive direct volume deformation and simultaneous visualization. The fundamental requirement is that interactive performance without pre-processing must be achieved for large volume data, where at any time up to one million elements participate in a deformation that is applied interactively by picking and dragging in the 3D view. Current physically-based approaches are still one or two orders of magnitude away from this goal. In contrast, our approach extends the non-physical ChainMail algorithm and combines it with on-the-fly resampling and GPU ray-casting. Special transfer functions assign material properties depending on volume density. The affected subvolume is deformed and resampled onto a rectilinear grid on the CPU, and updates the volume on the GPU where it is rendered using ray-casting. While the deformation is already being displayed, its quality is simultaneously refined via an iterative relaxation procedure executed in a parallel thread.

References

  1. Adams, B., Keiser, R., Pauly, M., Guibas, L., Gross, M., and Dutré, P. (2005). Efficient raytracing of deforming point-sampled surfaces. Computer Graphics Forum, 24(3):677-684.
  2. Brown, J., Sorkin, S., Bruyns, C., Latombe, J.-C., Montgomery, K., and Stephanides, M. (2002). Algorithmic tools for real-time microsurgery simulation. Medical Image Analysis, 6(3):289-300.
  3. Chen, M., Correa, C., Islam, S., Jones, M., Shen, P.-Y., D.Silver, Walton, S., and Willis, P. (2005). Deforming and animating discretely sampled object representations. In Eurographics - State of the Art Reports , pages 113-140.
  4. Chen, M., Silvery, D., Winter, A. S., Singhy, V., and Cornea, N. (2003). Spatial transfer functions - a unified approach to specifying deformation in volume modeling and animation. In Proceedings of Volume Graphics, pages 35-44.
  5. Desbrun, M. and Cani, M.-P. (1998). Active implicit surface for animation. In Proceedings of Graphics Interface, pages 143-150.
  6. Georgii, J. and Westermann, R. (2006). A multigrid framework for real-time simulation of deformable bodies. Computers and Graphics, 30(3):408-415.
  7. Gibson, S., Fyock, C., Grimson, E., Kanade, T., Kikinis, R., Lauer, H., McKenzie, N., Mor, A., Nakajima, S., Ohkami, H., R.Osborne, Samosky, J., and Sawada, A. (1998). Simulating surgery using volumetric object representations, real-time volumerendering, and haptic feedback. Medical Image Analysis, 2(2):121-132.
  8. Gibson, S. F. F. (1995). Beyond volume rendering: Visualization, haptic exploration, an physicalmodeling of voxel-based objects. In Proceedings of Visualization in Scientific Computing, pages 9-24. Springer-Verlag Wien.
  9. Gibson, S. F. F. (1997). 3D chainmail: A fast algorithm for deforming volumetric objects. In Proceedings of Symposium on Interactive 3D Graphics, pages 149- 154.
  10. Gibson, S. F. F. (1999). Using linked volumes to model object collisions, deformation, cutting, carving,and joining. IEEE Transactions on Visualization and Computer Graphics, 5(4):333-348.
  11. Li, Y. and Brodlie, K. (2003). Soft object modelling with generalised chainmail - extending the boundaries of web-based graphics. Comput. Graph. Forum, 22(4):717-728.
  12. Mosegaard, J., Herborg, P., and Sorensen, T. S. (2005). A gpu accelerated spring mass system for surgical simulation. In 13th Medicine Meets Virtual Reality Conference, volume 111 of Studies in Health Technology and Informatics, pages 342-348. IOS Presss.
  13. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. (2005). Meshless deformations based on shape matching. ACM Transactions on Graphics, 24(3):471-478.
  14. Müller, M., Keiser, R., Nealen, A., Paily, M., Gross, M., and Alexa, M. (2004). Point based animation of elastic, plastic and melting objects. In Proceedings of Eurographics/ACM Symposium on Computer Animation, pages 141-151.
  15. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. (2005). Physically based deformable models in computer graphics. In Eurographics - State of the Art Reports, pages 71-94.
  16. Neophytou, N. and Mueller, K. (2005). Gpu accelerated image aligned splatting. In Fujishiro, I. and Gröller, E., editors, Proceedings of Volume Graphics, pages 197-205.
  17. Rezk-Salama, C., Scheuering, M., Soza, G., and Greiner, G. (2001). Fast volumetric deformation on general purpose hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics Hardware, pages 17-24.
  18. Scharsach, H., Hadwiger, M., Neubauer, A., Wolfsberger, S., and Bühler, K. (2006). Perspective isosurface and direct volume rendering for virtual endoscopyapplications. In Proceedings of Eurovis 2006.
  19. Schill, M. A., Gibson, S. F. F., Bender, H.-J., and M änner, R. (1998). Biomechanical simulation of the vitreous humor in the eye using an enhancedChainMail algorithm. In Proceedings of Medical Image Computation and Computer Integrated Surgery, volume 1496 of Lecture Notes in Computer Science, pages 679- 687.
  20. Shirley, P. and Tuchmany, A. (1991). A polygonal approximation to direct scalar volume rendering. In Proceedings of Workshop on Volume Visualization, volume 24, pages 63-70.
  21. Singh, V., Silver, D., and Cornea, N. (2003). Real-time volume manipulation. In Proceedings of the Eurographics/IEEE TVCG Workshop on Volume Graphics, volume 45 of ACM International Conference Proceeding Series, pages 45-51.
  22. Weiler, M. and Ertl, T. (2001). Hardware-software-balanced resampling for the interactive visualization of unstructured grids. In Proceedings of IEEE Visualization, pages 199-206.
  23. Weiler, M., Kraus, M., Merz, M., and Ertl, T. (2003). Hardware-based view-independent cell projection. volume 9, pages 163 - 175.
  24. Weiler, M., Westermann, R., Hansen, C. D., Zimmerman, K., and Ertl, T. (2000). Level-of-detail volume rendering via 3D textures. In IEEE Symposium on Volume Visualization and Graphics, pages 7-13.
  25. Westermann, R. and Rezk-Salama, C. (2001). Real-time volume deformations. Computer Graphics Forum, 20(3):443-451.
  26. Westover, L. (1990). Footprint evaluation for volume rendering. In Proceedings of ACM SIGGRAPH, pages 367-376.
Download


Paper Citation


in Harvard Style

Schulze F., Bühler K. and Hadwiger M. (2007). INTERACTIVE DEFORMATION AND VISUALIZATION OF LARGE VOLUME DATASETS . In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 2: GRAPP, ISBN 978-972-8865-72-6, pages 39-46. DOI: 10.5220/0002082200390046


in Bibtex Style

@conference{grapp07,
author={Florian Schulze and Katja Bühler and Markus Hadwiger},
title={INTERACTIVE DEFORMATION AND VISUALIZATION OF LARGE VOLUME DATASETS},
booktitle={Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 2: GRAPP,},
year={2007},
pages={39-46},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002082200390046},
isbn={978-972-8865-72-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 2: GRAPP,
TI - INTERACTIVE DEFORMATION AND VISUALIZATION OF LARGE VOLUME DATASETS
SN - 978-972-8865-72-6
AU - Schulze F.
AU - Bühler K.
AU - Hadwiger M.
PY - 2007
SP - 39
EP - 46
DO - 10.5220/0002082200390046