SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM

Pascal Giorgi, Christophe Nègre, Thomas Plantard

2007

Abstract

We propose a new space efficient operator to multiply elements lying in a binary field F2k . Our approach is based on a novel system of representation called Double Polynomial System which set elements as a bivariate polynomials over F2 . Thanks to this system of representation, we are able to use a Lagrange representation of the polynomials and then get a logarithmic time multiplier with a space complexity of O(k1.31 ) improving previous best known method.

References

  1. Berlekamp, E. (1982). Bit-serial Reed-Solomon encoder. IEEE Transactions on Inf. Th., IT-28.
  2. Diffie, W. and Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 24:644-654.
  3. Fan, H. and Dai, Y. (2005). Fast bit-parallel GF(2 n) multiplier for all trinomials. IEEE Trans. on Comp., 54(4):485-490.
  4. Fan, H. and Hasan, A. (2007). A new approach to subquadratic space complexity parallel multipliers for extended binary fields. IEEE Trans. Comput., 56(2):224-233.
  5. Gao, S. (1993). Normal Bases over Finite Fields. Phd thesis, Waterloo University, Canada.
  6. Gathen, J. v. and Gerhard, J. (1999). Modern Computer Algebra. Cambridge University Press, New York, NY, USA.
  7. Giorgi, P., Jeannerod, C.-P., and Villard, G. (2003). On the complexity of polynomial matrix computations.
  8. In Proceedings of ISSAC'03, Philadelphia, Pennsylvania, USA, pages 135-142. ACM Press.
  9. Guajardjo, J. and Paar, C. (1997). Efficient algorithms for elliptic curve cryptosystems. In Advances in Cryptology, Proceedings of Eurocrypt'97, volume 1233 of LNCS, pages 342-356. Springer-Verlag.
  10. Hasan, M., Wang, M., and Bhargava, V. (1993). A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields. IEEE Transactions on Computeurs, 42(10):1278-1280.
  11. J.-C. Bajard, L.Imbert, T. P. (2005). Modular number systems: Beyong the mersenne family. In SAC'04,Waterloo, Canada, volume 3357 of LNCS, pages 159-169. Springer-Verlag.
  12. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48:203-209.
  13. Mastrovito, E. (1991). VLSI architectures for computations in Galois fields. PhD thesis, Dep.Elec.Eng.,Linkoping Univ.
  14. Miller, V. (1986). Use of elliptic curves in cryptography. In Advances in Cryptology, proceeding's of CRYPTO'85, volume 218 of LNCS, pages 417-426. Springer-Verlag.
  15. Montgomery, P. L. (1985). Modular multiplication without trial division. Mathematics of Computation, 44(170):519-521.
  16. Mulders, T. and Storjohann, A. (2003). On lattice reduction for polynomial matrices. Journal of Symbolic Computation, 35(4):377-401.
  17. Schonhage, A. (1977). Schnelle multiplikation von polynomen uber korpern der charakteristik 2. Acta Informatica, 7:395-398.
  18. Villard, G. (1996). Computing Popov and Hermite forms of polynomial matrices. In Proceedings of ISSAC'96, Zurich, Suisse, pages 250-258. ACM Press.
Download


Paper Citation


in Harvard Style

Giorgi P., Nègre C. and Plantard T. (2007). SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM . In Proceedings of the Second International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2007) ISBN 978-989-8111-12-8, pages 229-236. DOI: 10.5220/0002126102290236


in Bibtex Style

@conference{secrypt07,
author={Pascal Giorgi and Christophe Nègre and Thomas Plantard},
title={SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM},
booktitle={Proceedings of the Second International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2007)},
year={2007},
pages={229-236},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002126102290236},
isbn={978-989-8111-12-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2007)
TI - SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM
SN - 978-989-8111-12-8
AU - Giorgi P.
AU - Nègre C.
AU - Plantard T.
PY - 2007
SP - 229
EP - 236
DO - 10.5220/0002126102290236