SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM
Pascal Giorgi, Christophe Nègre, Thomas Plantard
2007
Abstract
We propose a new space efficient operator to multiply elements lying in a binary field F2k . Our approach is based on a novel system of representation called Double Polynomial System which set elements as a bivariate polynomials over F2 . Thanks to this system of representation, we are able to use a Lagrange representation of the polynomials and then get a logarithmic time multiplier with a space complexity of O(k1.31 ) improving previous best known method.
References
- Berlekamp, E. (1982). Bit-serial Reed-Solomon encoder. IEEE Transactions on Inf. Th., IT-28.
- Diffie, W. and Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 24:644-654.
- Fan, H. and Dai, Y. (2005). Fast bit-parallel GF(2 n) multiplier for all trinomials. IEEE Trans. on Comp., 54(4):485-490.
- Fan, H. and Hasan, A. (2007). A new approach to subquadratic space complexity parallel multipliers for extended binary fields. IEEE Trans. Comput., 56(2):224-233.
- Gao, S. (1993). Normal Bases over Finite Fields. Phd thesis, Waterloo University, Canada.
- Gathen, J. v. and Gerhard, J. (1999). Modern Computer Algebra. Cambridge University Press, New York, NY, USA.
- Giorgi, P., Jeannerod, C.-P., and Villard, G. (2003). On the complexity of polynomial matrix computations.
- In Proceedings of ISSAC'03, Philadelphia, Pennsylvania, USA, pages 135-142. ACM Press.
- Guajardjo, J. and Paar, C. (1997). Efficient algorithms for elliptic curve cryptosystems. In Advances in Cryptology, Proceedings of Eurocrypt'97, volume 1233 of LNCS, pages 342-356. Springer-Verlag.
- Hasan, M., Wang, M., and Bhargava, V. (1993). A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields. IEEE Transactions on Computeurs, 42(10):1278-1280.
- J.-C. Bajard, L.Imbert, T. P. (2005). Modular number systems: Beyong the mersenne family. In SAC'04,Waterloo, Canada, volume 3357 of LNCS, pages 159-169. Springer-Verlag.
- Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48:203-209.
- Mastrovito, E. (1991). VLSI architectures for computations in Galois fields. PhD thesis, Dep.Elec.Eng.,Linkoping Univ.
- Miller, V. (1986). Use of elliptic curves in cryptography. In Advances in Cryptology, proceeding's of CRYPTO'85, volume 218 of LNCS, pages 417-426. Springer-Verlag.
- Montgomery, P. L. (1985). Modular multiplication without trial division. Mathematics of Computation, 44(170):519-521.
- Mulders, T. and Storjohann, A. (2003). On lattice reduction for polynomial matrices. Journal of Symbolic Computation, 35(4):377-401.
- Schonhage, A. (1977). Schnelle multiplikation von polynomen uber korpern der charakteristik 2. Acta Informatica, 7:395-398.
- Villard, G. (1996). Computing Popov and Hermite forms of polynomial matrices. In Proceedings of ISSAC'96, Zurich, Suisse, pages 250-258. ACM Press.
Paper Citation
in Harvard Style
Giorgi P., Nègre C. and Plantard T. (2007). SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM . In Proceedings of the Second International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2007) ISBN 978-989-8111-12-8, pages 229-236. DOI: 10.5220/0002126102290236
in Bibtex Style
@conference{secrypt07,
author={Pascal Giorgi and Christophe Nègre and Thomas Plantard},
title={SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM},
booktitle={Proceedings of the Second International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2007)},
year={2007},
pages={229-236},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002126102290236},
isbn={978-989-8111-12-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Second International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2007)
TI - SUBQUADRATIC BINARY FIELD MULTIPLIER IN DOUBLE POLYNOMIAL SYSTEM
SN - 978-989-8111-12-8
AU - Giorgi P.
AU - Nègre C.
AU - Plantard T.
PY - 2007
SP - 229
EP - 236
DO - 10.5220/0002126102290236