COMPARISON OF BACKGROUND SUBTRACTION METHODS FOR A MULTIMEDIA LEARNING SPACE

F. El Baf, T. Bouwmans, B. Vachon

2007

Abstract

This article presents, at a first time, a multimedia application called Aqu@theque. This project consists in elaborating a multimedia system dedicated to aquariums which gives ludo-pedagogical information in an interactive learning area. The reliability of this application depends of the segmentation and recognition steps. Then, we focus on the segmentation step using the background subtraction principle. Our motivation is to compare different background subtraction methods used to detect fishes in video sequences and to improve the performance of this application. In this context, we present a new classification of the critical situations which occurred in videos and disturbed the assumptions made in background subtraction methods. This classification can be used in any application using background subtraction like video surveillance, motion capture or video games.

References

  1. Semani D., Saint-Jean C., Frélicot C., Bouwmans T., Courtellemont P., January 2002, Alive Fish species characterization for on line video-based recognition, Proceeding of the SPR 2002, Windsor, Canada, pages 689-698.
  2. Semani D., Bouwmans T., Frélicot C., Courtellemont P., July 2002, Automatic Fish Recognition in Interactive Live Videos, Proceeding of the IVRCIA 2002, volume XIV, Orlando, Florida, pages 94-99.
  3. Desfieux J., Mascarilla L., Courtellemont P., 2002, Interactivity and Educational Information in Virtual Real-Time 3D Videos, Proceeding of the IVRCIA 2002.
  4. Wren C., Azarbayejani A., Darrell T., Pentland A., , July 1997, Pfinder : Real-Time Tracking of the Human Body, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 19, No. 7, pages 780 - 785.
  5. Stauffer C., 1999, Adaptive background mixture models for real-time tracking, Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pages 246-252.
  6. Elgammal A., Harwood D., Davis L., June 2000, Nonparametric Model for Background Subtraction, 6th European Conference on Computer Vision 2000, Dublin, Ireland.
  7. Toyama K., Krumm J., Brumitt B., 1999, Wallflower: Principles and Practice of Background Maintenance, Proceedings of the International Conference on Computer Vision 1999, pages 255-261.
  8. Cucchiara R., Grana C., Piccardi M., Prati A. , 2003, Detecting Moving Objects, Ghosts and Shadows in Video Streams", IEEE Transactions on Pattern Analysis and Machine Intelligence 2003, volume 25, no 10, pages 1337-1342, 2003.
  9. Culibrk D., Socek D. , Marques O., Furht B., March 2007, Automatic kernel width selection for neural network based video object segmentation, VISAPP 2007, Barcelona, Spain.
  10. KaewTraKulPong P., Bowden R., September 2001, An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection, Proceedings 2nd European Workshop on Advanced Video Based Surveillance Systems, AVBS 2001, Kingston, UK.
  11. Kim K., Chalidabhongse T., Harwood D., Davis L. , 2006, PDR: Performance Evaluation Method for Foreground-Background Segmentation Algorithms, EURASIP Journal on Applied Signal Processing.
  12. Huerta I., Rowe D., Gonzàlez J., Villanueva J., October 2006, Improving Foreground Detection for Adaptive Background Segmentation, First CVC Internal Workshop on the Progress of Research and Development (CVCRD 2006).
  13. VSSN 2006 - Algorithm Competition in Foreground/Background Segmentation: http://www.imagelab.ing.unimo.it/vssn06/.
Download


Paper Citation


in Harvard Style

El Baf F., Bouwmans T. and Vachon B. (2007). COMPARISON OF BACKGROUND SUBTRACTION METHODS FOR A MULTIMEDIA LEARNING SPACE . In Proceedings of the Second International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2007) ISBN 978-989-8111-13-5, pages 149-154. DOI: 10.5220/0002134201490154


in Bibtex Style

@conference{sigmap07,
author={F. El Baf and T. Bouwmans and B. Vachon},
title={COMPARISON OF BACKGROUND SUBTRACTION METHODS FOR A MULTIMEDIA LEARNING SPACE},
booktitle={Proceedings of the Second International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2007)},
year={2007},
pages={149-154},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002134201490154},
isbn={978-989-8111-13-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2007)
TI - COMPARISON OF BACKGROUND SUBTRACTION METHODS FOR A MULTIMEDIA LEARNING SPACE
SN - 978-989-8111-13-5
AU - El Baf F.
AU - Bouwmans T.
AU - Vachon B.
PY - 2007
SP - 149
EP - 154
DO - 10.5220/0002134201490154