STAH-TREE - Hybrid Index for Spatio Temporal Aggregation

Marcin Gorawski, Michał Faruga

2007

Abstract

This paper presents a new index that stores spatiotemporal data and provides efficient algorithms for processing range and time aggregation queries where results are precise values not an approximation. In addition, this technology allows to reach detailed information when they are required. Spatiotemporal data are defined as static spatial objects with non spatial attributes changing in time. Range aggregation query computes aggregation over set of spatial objects that fall into query window. Its temporal extension allows to define additional time constraints. Index name (i.e. STAH-tree) is English abbreviation and can be extended as Spatio-Temporal Aggregation Hybrid Tree. STAH-tree is based on two well known indexing techniques. R– and aR–tree for storing spatial data and MVB-tree for storing non-spatial attributes values. These techniques were extended with new functionality and adopted to work together. Cost model for node accesses was also developed.

References

  1. Manolopoulos, Y., Nanopoulos, A., Papadopoulos A. N., Theodoridis Y. 2006. R- Trees: Theory and Applications. Springer
  2. Beckerman N., Kriegel H.P., Schneider R., Seeger B. 1990. The R*-tree: An efficient and robust access method for points and rectangles. Proc. SIGMOD International Conference on Management of Data, pages 322-331
  3. Guttman A. 1984 R-trees: A dynamic index structure for spatial searching Proc. SIGMOD International Conference on Management of Data, pages 47-57
  4. Kamel I. Faloutsos. 1994. Hilbert R-tree: An improved Rtree using fractals. Proc. International Conference on Very Large Databases, pages 500-509
  5. Kamel I. Faloutsos. 1993. On packing R-trees. Proc. International Conference on Information and Knowledge Management, pages 490-499
  6. Becker B., Gschwind S., Ohler T., Seeger B., Windmayer O. 1996 An Asymptotically Optimal Multiversion Btree VLDB Journal, 5(4), pages 264-275
  7. Tao Y., Papadias D., Zhang J. 2002 Efficient Cost Models for Overlapping and Multi-Version Structures. TODS, 27(3), pages 299-342
  8. Tao Y., Papadias D. 2004 Range Aggregate Processing in Spatial Databases. IEEE Trans. Knowl. Data Eng. 16(12), pages 1555-1570
  9. Theodoridis Y., Sellis T., 1996. A model for the Prediction of R-tree Performance. Proc. Symp. Principles of Database Systems
  10. Comer D., 1979. The Ubiquitous B-tree. ACM Computing Surveys, Vol. 11, No 2, pages 121-137
  11. Zhang D., Tsotras V. J., Gunopulos D. Efficient aggregation over Objects with Extent. PODS 2002, pages 121-132
  12. Zhang D., Markowetz A., Tsotras V. J., Gunopulos D., Seeger B. Efficient Computation of Temporal Aggregates with Range Predicates. PODS 2001
  13. Bercken J., Seeger B. Query Processing Techniques for Multiversion Access Methods. VLDB 1996
Download


Paper Citation


in Harvard Style

Gorawski M. and Faruga M. (2007). STAH-TREE - Hybrid Index for Spatio Temporal Aggregation . In Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-972-8865-88-7, pages 113-118. DOI: 10.5220/0002386601130118


in Bibtex Style

@conference{iceis07,
author={Marcin Gorawski and Michał Faruga},
title={STAH-TREE - Hybrid Index for Spatio Temporal Aggregation},
booktitle={Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2007},
pages={113-118},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002386601130118},
isbn={978-972-8865-88-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Ninth International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - STAH-TREE - Hybrid Index for Spatio Temporal Aggregation
SN - 978-972-8865-88-7
AU - Gorawski M.
AU - Faruga M.
PY - 2007
SP - 113
EP - 118
DO - 10.5220/0002386601130118