BIOSIG - Standardization and Quality Control in Biomedical Signal Processing using the BioSig Project
A. Schlögl, C. Vidaurre, Ernst Hofer, Thomas Wiener, Clemens Brunner, Reinhold Scherer, Franco Chiarugi
2008
Abstract
Biomedical signal processing is an important but underestimated area of medical informatics. In order to overcome this limitation, the open source software library BioSig has been established. The tools can be used to compare the recordings of different equipment providers, it provides validated methods for artifact processing and supports over 40 different data formats (more than any other software in this area). BioSig provides reference implementations for biomedical signal processing questions and holds the top rank among all biomedical signal processing projects registered at SourceForge. Thus is provides standardization and quality control for the field of biomedical signal processing.
References
- Afonso, V., Tompkins, W., Nguyen, T., Luo S. 1999. ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2):192-202.
- Berger R.D., Akselrod S., Gordon D., Cohen R.J. 1986. An efficient algorithm for spectral analysis of heart rate variability. IEEE Trans Biomed Eng. 33(9):900-4.
- Bruce, E. N., M. D. Goldman, and J. Mead. A digital computer technique for analyzing respiratory muscle EMGs. J. Appl. Physiol. 43: 551-556, 1977
- Efron, B. 1981. "Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods", Biometrika, 68, 589-599.
- EN1064 2005. Health informatics. Standard communication protocol. Computer-assisted electrocardiography
- Goncharova, I.I. and Barlow, J.S. 1990. Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking. Electroencephalogr Clin Neurophysiol. 76(3):197-204.
- Hemmelmann C, Horn M, Suesse T, Vollandt R, Weiss S. 2005. New concepts of multiple tests and their use for evaluating high-dimensional EEG data. J Neurosci Methods. 142(2):209-17.
- Hjorth, B. 1975. Time Domain Descriptors and their Relation to particulare Model for Generation of EEG activity. in G. Dolce, H. Kunkel: CEAN Computerized EEG Analysis, Gustav Fischer, p.3-8.
- Hofer, E., Keplinger, F., Thurner, T., Wiener, T., SanchezQuintana, D., Climent, V., Plank, G., 2006. A new floating sensor array to detect electric near fields of beating heart preparations. In Biosens. Bioelectron., vol. 21, pp 2232-2239.
- Mateo, J., Laguna, P. 2003. Analysis of Heart Rate Variability in Presence of Ectopic Beats Using the Heart Timing Signal. IEEE Transactions on biomedical engineering, 50(3): 334-343.
- Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. 2004. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol.115(10):2292-307.
- Nygards, M.-E. and Sörnmo, L. 1983. Delineation of the QRS complex using the envelope of the e.c.g.-Med. & Biol. Eng. & Comput., 21, 538-547.
- Plank, G., Hofer, E., 2000. Model study of vector-loop morphology during electrical mapping of microscopic conduction in cardiac tissue. In Ann. Biomed. Eng., vol. 28, pp 1244-1252.
- Plank, G., Vigmond, E., Leon, L.J., Hofer, E., 2003. Cardiac near-field morphology during conduction around a microscopic obstacle - a computer simulation study. In Ann. Biomed. Eng., vol. 31, pp 1206-1212.
- Platt, R.S., Hajduk, E.A., Hulliger, M., Easton,P.A. 1998. A modified Bessel filter for amplitude demodulation of respiratory electromyograms. J. Appl. Physiol. 84(1): 378-388.
- Pop-Jordanova, N. and Jordan Pop-Jordanov J. 2005. Spectrum-weighted EEG frequency ("Brainrate") as a quantitative indicator of arousal Contributions, Sec. Biol. Med. Sci., MASA, XXVI, 2: 35 - 42
- Schlögl, A., Kemp, B., Penzel, T., Kunz, D., Himanen, S.- L., Värri, A., Dorffner, G., Pfurtscheller, G., 1999a. Quality Control of polysomnographic Sleep Data by Histogram and Entropy Analysis. Clin. Neurophysiol. 110(12): 2165 - 2170.
- Schlögl, A., Filz, O., Ramoser, H., Pfurtscheller, G. 1999b. GDF version 1 - A general dataformat for biosignals, available at: http://www.dpmi.tugraz.at/schloegl/matlab/eeg/gdf4/T R_GDF.pdf
- Schlögl, A. 2000. The electroencephalogram and the adaptive autoregressive model: theory and applications. Shaker Verlag, Aachen, Germany.
- Schlögl, A. 2006a. Comparison of Multivariate Autoregressive Estimators. Signal processing. 86(9): 2426-9.
- Schlögl, A. 2006b. GDF version 2 - A general dataformat for biosignals. http://arxiv.org/abs/cs.DB/0608052
- Schlögl, A. and Supp, G. 2006. Analyzing event-related EEG data with multivariate autoregressive parameters. (Eds.) C. Neuper and W. Klimesch, Event-related Dynamics of Brain Oscillations. Analysis of dynamics of brain oscillations: methodological advances. Progress in Brain Research 159: 135 - 147.
- Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., Pfurtscheller, G. 2007a. A fully automated correction method of EOG artifacts in EEG recordings. Clin. Neurophys. 118(1):98-104.
- Schlögl, A., Chiarugi, F., Cervesato, E Apostolopoulos, E., Chronaki, C.E.. 2007b. Two-Way Converter between the HL7 aECG and SCP-ECG Data Formats Using BioSig. Conference on Computers In Cardiology,
- Taskforce Heart Rate Variability: Standards of Measurement, physilogical interpretation and clinical use. Taskforce of the European Society for Cardiology and the North American Society of Pacing and Electrophysiology. European Heart Journal (1996) 17, 354-381.
- Vidaurre, C., Schlögl, A.,Cabeza, R., Scherer, R. Pfurtscheller, G. 2006. A fully on-line adaptive BCI, IEEE Trans. Biomed. Eng., 53(8): 1214-1219.
- Wackermann, J. 1999. Towards a quantitative characterization of functional states of the brain: from the non-linear methodology to the global linear descriptor. International Journal of Psychophysiology, 34: 65-80.
- Wiener, T., Thurner, T., Prassl, A.J., Plank, G., Hofer, E., 2007. Accuracy of local conduction velocity determination from non-fractionated cardiac activation signals. In EMBC'07, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Paper Citation
in Harvard Style
Schlögl A., Vidaurre C., Hofer E., Wiener T., Brunner C., Scherer R. and Chiarugi F. (2008). BIOSIG - Standardization and Quality Control in Biomedical Signal Processing using the BioSig Project . In Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008) ISBN 978-989-8111-18-0, pages 403-409. DOI: 10.5220/0001065904030409
in Bibtex Style
@conference{biosignals08,
author={A. Schlögl and C. Vidaurre and Ernst Hofer and Thomas Wiener and Clemens Brunner and Reinhold Scherer and Franco Chiarugi},
title={BIOSIG - Standardization and Quality Control in Biomedical Signal Processing using the BioSig Project},
booktitle={Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008)},
year={2008},
pages={403-409},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001065904030409},
isbn={978-989-8111-18-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008)
TI - BIOSIG - Standardization and Quality Control in Biomedical Signal Processing using the BioSig Project
SN - 978-989-8111-18-0
AU - Schlögl A.
AU - Vidaurre C.
AU - Hofer E.
AU - Wiener T.
AU - Brunner C.
AU - Scherer R.
AU - Chiarugi F.
PY - 2008
SP - 403
EP - 409
DO - 10.5220/0001065904030409