WEIGHTS CONVERGENCE AND SPIKES CORRELATION IN AN ADAPTIVE NEURAL NETWORK IMPLEMENTED ON VLSI
A. Daouzli, S. Saïghi, L. Buhry, Y. Bornat, S. Renaud
2008
Abstract
This paper presents simulations of a conductance-based neural network implemented on a mixed hardware-software simulation system. Synaptic connections follow a bio-realistic STDP rule. Neurons receive correlated input noise patterns, resulting in a weights convergence in a confined range of conductance values. The correlation of the output spike trains depends on the correlation degree of the input patterns.
References
- Abbott, L. F. and Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Natural Neuroscience, 3:1178- 1183.
- Badoual, M., Zou, Q., Davison, A. P., Rudolph, M., Bal, T., Frégnac, Y., and Destexhe, A. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int. J. Neural Syst., 16(2):79-98.
- Connors, B. and Gutnick, M. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13:99-104.
- Destexhe, A., Mainen, Z., and Sejnowski, T. J. (1994). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6:10-14.
- Feldman, D. E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27:45-56.
- Froemke, R. C. and Dan, Y. (2002). Spike-timingdependent plasticity modification induced by natural spike trains. Nature, 416:433-438.
- Froemke, R. C., Poo, M., and Dan, Y. (2005). Spiketiming-dependent plasticity depends on dendritic location. Nature, 434:221-225.
- Hebb, D. O. (1949). The Organization of Behaviour. John Wiley & Sons.
- Hines, M. L. and Carnevale, N. T. (1997). The neuron simulation environment. Neural Computation, 9:1179- 1209.
- Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117:500-544.
- Kepecs, A., van Rossum, M. C. W., Song, S., and Tegner, J. (2002). Spike timing dependent plasticity: common themes and divergent vistas. Biological Cybernetics, 87:446-458.
- Le Masson, G., Renaud-Le Masson, S., Debay, D., and Bal, T. (2002). Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature, 417:854-858.
- Lewis, N., Bornat, Y., Alvado, L., Lopez, C., Daouzli, A., Levi, T., Tomas, J., Saghi, S., and Renaud, S. (2006). Pax : un outil logiciel / matériel d'investigation pour les neurosciences computationnelles. In NeuroComp, pages 171-174.
- Magee, J. C. and Johnston, D. (1997). A synaptically controlled, associative signal for hebbian plasticity in hippocampal neurons. Science, 275:209-213.
- Markram, H., Lubke, J., Frotscher, M., and Sackmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275:213-215.
- Renaud, S., Tomas, J., Bornat, Y., Daouzli, A., and Saighi, S. (2007). Neuromimetic ICs with analog cores: an alternative for simulating spiking neural networks. In InternationaI Symposium on Circuits And Systems, pages 3355-3358. IEEE.
- Roberts, P. D. and Bell, C. C. (2002). Spike timing dependent synaptic plasticity in biological systems. Biological Cybernetics, 87:392-403.
- Rumsey, C. C. and Abbott, L. F. (2003). Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. The Journal of Neurophysiology, 91:2273-2280.
- Singer, W. and Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18:555-586.
- Song, S. and Abbott, L. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron, 32:339-350.
- Song, S., Miller, K., and Abbott, L. (2000). Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3:919-926.
- van Rossum, M. C. W., Bi, G.-Q., and Turrigiano., G. (2000). Stable hebbian learning from spike timingdependent plasticity. The Journal of Neuroscience, 20:8812-8821.
- van Rossum, M. C. W. and Turrigiano, G. (2001). Correlation based learning from spike timing dependent plasticity. Neurocomputing, 38-40:409-415.
- Zou, Q. (2006). Computational models of spike timing dependent plasticity: synapses, neurons and circuits. PhD thesis, Université Paris VI.
- Zou, Q., Bornat, Y., Saïghi, S., Tomas, J., Renaud, S., and Destexhe, A. (2006a). Analog-digital simulations of full-conductance-based networks of spiking neurons with spike timing dependent plasticity. Network: computation in neural systems, 17:211-233.
- Zou, Q., Bornat, Y., Tomas, J., Renaud, S., and Destexhe, A. (2006b). Real-time simulations of networks of hodgkin-huxley neurons using analog circuits. Neurocomputing, 69:1137-1140.
- Zou, Q. and Destexhe, A. (2007). Kinetic models of spiketiming dependent plasticity and their functional consequences in detecting correlations. Biol. Cybern., 97(1):81-97.
Paper Citation
in Harvard Style
Daouzli A., Saïghi S., Buhry L., Bornat Y. and Renaud S. (2008). WEIGHTS CONVERGENCE AND SPIKES CORRELATION IN AN ADAPTIVE NEURAL NETWORK IMPLEMENTED ON VLSI . In Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2008) ISBN 978-989-8111-18-0, pages 286-291. DOI: 10.5220/0001069102860291
in Bibtex Style
@conference{biosignals08,
author={A. Daouzli and S. Saïghi and L. Buhry and Y. Bornat and S. Renaud},
title={WEIGHTS CONVERGENCE AND SPIKES CORRELATION IN AN ADAPTIVE NEURAL NETWORK IMPLEMENTED ON VLSI},
booktitle={Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2008)},
year={2008},
pages={286-291},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001069102860291},
isbn={978-989-8111-18-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2008)
TI - WEIGHTS CONVERGENCE AND SPIKES CORRELATION IN AN ADAPTIVE NEURAL NETWORK IMPLEMENTED ON VLSI
SN - 978-989-8111-18-0
AU - Daouzli A.
AU - Saïghi S.
AU - Buhry L.
AU - Bornat Y.
AU - Renaud S.
PY - 2008
SP - 286
EP - 291
DO - 10.5220/0001069102860291