UNVEILING INTRINSIC SIMILARITY - Application to Temporal Analysis of ECG

André Lourenço, Ana Fred

2008

Abstract

The representation of data in some visual form is one of the first steps in a data-mining process in order to gain some insight about its structure. We propose to explore well known visualization and unsupervised learning techniques, namely clustering, to improve the understanding about the data and to enhance possible relations or intrinsic similarity between patterns. Specifically, Clustering Ensemble Methods are exploited separately and combined to provide a clearer visualization of data organization. The presented methodology is used to improve the understanding of ECG signal acquired during Human Computer Interaction (HCI).

References

  1. Bezdek, J. and Hathaway, R. (2002). Vat: A tool for visual assessment of (cluster) tendency. In Press, I., editor, IJCNN 2002, pages 2225-2230.
  2. Cox, T. F. and Cox, M. A. A. (1994). Multidimensional Scaling. Chapman and Hall.
  3. de Leeuw, J. (2000). Multidimensional scaling. Dep. of Statistics, UCLA. Paper 2000010108.
  4. Fred, A. (2001). Finding consistent clusters in data partitions. In Kittler, J. and Roli, F., editors, Multiple Classifier Systems, volume 2096, pages 309-318. Springer.
  5. Fred, A. (2002). Pattern Recognition and String Matching, chapter Similarity measures and clustering of string patterns. Kluwer Academic.
  6. Fred, A. and Jain, A. (2002). Data clustering using evidence accumulation. In Proc. of the 16th Int'l Conference on Pattern Recognition, pages 276-280.
  7. Fred, A. and Jain, A. (2005). Combining multiple clustering using evidence accumulation. IEEE Trans Pattern Analysis and Machine Intelligence, 27(6):835-850.
  8. Fred, A. and Jain, A. (2006). Learning pairwise similarity for data clustering. In Proc. of the 18th Int'l Conference on Pattern Recognition (ICPR), volume 1, pages 925-928, Hong Kong.
  9. Jain, A. and Dubes, R. (1988). Algorithms for Clustering Data. Prentice Hall.
  10. Pekalska, E. and Duin, R. P. W. (2003). The Dissimilarity Representation for Pattern Recognition: Foundations And Applications. World Sci. Pub. Company.
  11. Post, F. H., Nielson, G. M., and Bonneau, G.-P., editors (2003). Data Visualization: The State of the Art. Kluwer.
  12. Silva, H., Gamboa, H., and Fred, A. L. N. (2007). One lead ecg based human identification with feature subspace ensembles. In Proc Machine Learning and Data Mining in Pattern Recognition, pages 770 - 783, Leipzig, Germany.
  13. Strehl, A. and Ghosh, J. (2002). Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. of Machine Learning Research 3.
  14. Topchy, A., Jain, A., and Punch, W. (2004). A mixture model of clustering ensembles. In Proceedings SIAM Conf. on Data Mining.
  15. Treinish, L. A. and Goettsche, C. (1989). Correlative visualization techniques for multidimensional data. Technical report, National Space Science Data Center NSSDC-NASA.
Download


Paper Citation


in Harvard Style

Lourenço A. and Fred A. (2008). UNVEILING INTRINSIC SIMILARITY - Application to Temporal Analysis of ECG . In Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008) ISBN 978-989-8111-18-0, pages 104-109. DOI: 10.5220/0001070201040109


in Bibtex Style

@conference{biosignals08,
author={André Lourenço and Ana Fred},
title={UNVEILING INTRINSIC SIMILARITY - Application to Temporal Analysis of ECG},
booktitle={Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008)},
year={2008},
pages={104-109},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001070201040109},
isbn={978-989-8111-18-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008)
TI - UNVEILING INTRINSIC SIMILARITY - Application to Temporal Analysis of ECG
SN - 978-989-8111-18-0
AU - Lourenço A.
AU - Fred A.
PY - 2008
SP - 104
EP - 109
DO - 10.5220/0001070201040109