ANISOTROPIC DIFFUSION BY QUADRATIC REGULARIZATION

Marcus Hund, Bärbel Mertsching

2008

Abstract

Based on a regularization formulation of the problem, we present a novel approach to anisotropic diffusion that brings up a clear and easy-to-implement theory containing a problem formulation with existence and uniqueness of the solution. Unlike many iterative applications, we present a clear condition for the step size ensuring the convergence of the algorithm. The capability of our approach is demonstrated on a variety of well known test images.

References

  1. Aubert, G., Barlaud, M., Blanc-Feraud, L., and Charbonnier, P. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Imag. Process. 5(12).
  2. Brockers, R., Hund, M., and Mertsching, B. (2005). Stereo Matching with Occlusion Detection Using Cost Relaxation. In IEEE International Conference on Image Processing (ICIP 2005), volume III, pages 389 - 392.
  3. Guerrero-Colon, J. A. and Portilla, J. (2005). Two-level adaptive denoising using gaussian scale mixtures in overcomplete oriented pyramids. IEEE International Conference on Image Processing (ICIP 2005), vol. I, 105-108.
  4. Hund, M. (2002). Disparitätsbestimmung aus Stereobildern auf der Basis von Kostenfunktionen. Diploma thesis, University of Paderborn.
  5. Ito, K. and Kunisch, K. (1999). An active set strategy based on the augmented lagrangian formulation for image restoration. M2AN Math. Model. Numer. Anal., Vol.
  6. 33, pp. 1-21.
  7. Jähne, B. (2002). Digital image processing (5th ed.): concepts, algorithms, and scientific applications . Springer-Verlag.
  8. Mahamud, S., Williams, L. R., Thornber, K. K., and Xu, K. (2003). Segmentation of multiple salient closed contours from real images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(4).
  9. Nordstrom, K. N. (1989). Biased anisotropic diffusion-a unified regularization and diffusion approach to edge detection. Technical Report UCB/CSD-89-514, EECS Department, University of California, Berkeley.
  10. Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12(7):629-639.
  11. Portilla, J., Strela, V., Wainwright, M., and Simoncelli, E. (2003). Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Proc., In Press. 2003.
  12. Scharr, H. and Weickert, J. (2000). An anisotropic diffusion algorithm with optimized rotation invariance. In G. Sommer, N. Kr uger, C. Perwass (Eds.), Mustererkennung.
  13. Weickert, J. (1996). Anisotropic diffusion in image processing. Ph.D. thesis, Dept. of Mathematics, University of Kaiserslautern, Germany.
  14. Weickert, J. (1999). Coherence-enhancing diffusion of colour images. Image Vision Comput., 17(3-4):201- 212.
Download


Paper Citation


in Harvard Style

Hund M. and Mertsching B. (2008). ANISOTROPIC DIFFUSION BY QUADRATIC REGULARIZATION . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 101-107. DOI: 10.5220/0001076901010107


in Bibtex Style

@conference{visapp08,
author={Marcus Hund and Bärbel Mertsching},
title={ANISOTROPIC DIFFUSION BY QUADRATIC REGULARIZATION},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={101-107},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001076901010107},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - ANISOTROPIC DIFFUSION BY QUADRATIC REGULARIZATION
SN - 978-989-8111-21-0
AU - Hund M.
AU - Mertsching B.
PY - 2008
SP - 101
EP - 107
DO - 10.5220/0001076901010107