RELEVANCE FEEDBACK WITH MAX-MIN POSTERIOR PSEUDO-PROBABILITY FOR IMAGE RETRIEVAL
Yuan Deng, Xiabi Liu, Yunde Jia
2008
Abstract
This paper proposes a new relevance feedback method for image retrieval based on max-min posterior pseudo-probabilities (MMP) framework. We assume that the feature vectors extracted from the relevant images be of the distribution of Gaussian mixture model (GMM). The corresponding posterior pseudo-probability function is used to classify images into two categories: relevant to the user intention and irrelevant. The images relevant to the user intention are returned as the retrieval results which are then labelled as true of false by the user. We further apply MMP training criterion to update the parameter set of the posterior pseudo-probability function from the labelled retrieval results. Subsequently, new retrieval results are returned. Our method of relevance feedback was tested on Corel database and the experimental results show the effectiveness of the proposed method.
References
- Chen, S.C., Rubin, S.H., Shyu, M.L., Zhang, C., 2006. A dynamic user concept pattern learning framework for content-based image retrieval. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 36(6): 772-783.
- Cheng, J., Wang, K., 2007. Active learning for image retrieval with Co-SVM. Pattern Recognition, 40(1): 330-334.
- Deng, Y., Liu, X., Jia, Y., 2007. Learning Semantic Concepts for Image Retrieval Using the Max-min Posterior Pseudo-Probabilities Method. In ICME 2007, IEEE International Conference on Multimedia and Expo.
- Goldmann, L., Thiele, L., Sikora, T., 2006. Online image retrieval system using long term relevance feedback. In CIVR 2006, International Conference on Image and Video Retrieval.
- Gosselin, P.H., Cord, M., 2004. RETIN AL: an active learning strategy for image category retrieval. In ICIP 2004, International Conference on Image Processing.
- Liu, X., Jia, Y., Chen, X., Deng, Y., Fu, H., 2006. MaxMin Posterior Pseudo-Probabilities Estimation of Posterior Class Probabilities to Maximize Class Separability. Technical Report BIT-CS-TP20060002, Beijing: Beijing Institute of Technology. (http://www.mcislab.org.cn/technicalreports/MMP.pdf) Liu, Y., Zhang, D., Lu, G., Ma, W.Y., 2007. A Survey of Content-Based Image Retrieval with High-level Semantics. Pattern Recognition, 40(1): 262-282.
- Peng, X., King, I., 2006. Imbalanced learning in relevance feedback with biased minimax probability machine for image retrieval tasks. In ICONIP 2006, International Conference on Neural Information Processing.
- Rao, Y., Mundur, P., Yesha, Y., 2006. Fuzzy SVM Ensembles for Relevance Feedback in Image Retrieval. In CIVR 2006, International Conference on Image and Video Retrieval.
- Tao, D., Tang, X., Li, X., Wu, X., 2006. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7): 1088-1099.
- Yu, J., Lu, Y., Xu, Y., Sebe, N., Tian, Q., 2007. Integrating relevance feedback in boosting for contentbased image retrieval. In ICASSP 2007, IEEE International Conference on Acoustics, Speech, and Signal Processing.
- Zhang, R., Zhang, Z., 2006. BALAS: Empirical bayesian learning in the relevance feedback for image retrieval. Image and Vision Computing, 24(3): 211-223.
- Zhou, X.S., Huang, T.S., 2003. Relevance feedback in image retrieval: A comprehensive review. Multimedia Systems, 8(6): 536-544.
Paper Citation
in Harvard Style
Deng Y., Liu X. and Jia Y. (2008). RELEVANCE FEEDBACK WITH MAX-MIN POSTERIOR PSEUDO-PROBABILITY FOR IMAGE RETRIEVAL . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 286-289. DOI: 10.5220/0001079602860289
in Bibtex Style
@conference{visapp08,
author={Yuan Deng and Xiabi Liu and Yunde Jia},
title={RELEVANCE FEEDBACK WITH MAX-MIN POSTERIOR PSEUDO-PROBABILITY FOR IMAGE RETRIEVAL},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={286-289},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001079602860289},
isbn={978-989-8111-21-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - RELEVANCE FEEDBACK WITH MAX-MIN POSTERIOR PSEUDO-PROBABILITY FOR IMAGE RETRIEVAL
SN - 978-989-8111-21-0
AU - Deng Y.
AU - Liu X.
AU - Jia Y.
PY - 2008
SP - 286
EP - 289
DO - 10.5220/0001079602860289