A MAXIMUM LIKELIHOOD SURFACE NORMAL ESTIMATION ALGORITHM FOR HELMHOLTZ STEREOPSIS

Jean-Yves Guillemaut, Ondřej Drbohlav, John Illingworth, Radim Šára

2008

Abstract

Helmholtz stereopsis is a relatively recent reconstruction technique which is able to reconstruct scenes with arbitrary and unknown surface reflectance properties. Conventional implementations of the method estimate surface normal direction at each surface point via an eigenanalysis, thereby optimising an algebraic distance. We develop a more physically meaningful radiometric distance whose minimisation is shown to yield a Maximum Likelihood surface normal estimate. The proposed method produces more accurate results than algebraic methods on synthetic imagery and yields excellent reconstruction results on real data. Our analysis explains why, for some imaging configurations, a sub-optimal algebraic distance can yield good results.

References

  1. Cook, R. L. and Torrance, K. E. (1982). A reflectance model for computer graphics. ACM Transactions on Graphics, 1(1):7-24.
  2. Guillemaut, J.-Y., Drbohlav, O., S?ára, R., and Illingworth, J. (2004). Helmholtz stereopsis on rough and strongly textured surfaces. In Proc. International Symposium on 3D Data Processing, Visualization and Transmission, pages 10-17.
  3. Hartley, R. I. (1997). In defence of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6):580-593.
  4. Jankó, Z., Drbohlav, O., and S?ára, R. (2004). Radiometric calibration of a Helmholtz stereo rig. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 166-171.
  5. Lafortune, E. P. and Willems, Y. D. (1994). Using the modified phong reflectance model for physically based rendering. Technical Report CW 197, Department of Computing Science, K.U. Leuven, November, 1994.
  6. Lewis, R. R. (1994). Making shaders more physically plausible. Computer Graphics Forum, 13(2):109-120.
  7. Magda, S., Kriegman, D. J., Zickler, T., and Belhumeur, P. N. (2001). Beyond Lambert: Reconstructing surfaces with arbitrary BRDFs. In Proc. IEEE International Conference on Computer Vision, volume 2, pages 391-398.
  8. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. (1977). Geometrical consideration and nomenclature for reflectance. NBS Monograph 160.
  9. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical recipes in C. Cambridge University Press, second edition.
  10. Sen, P., Chen, B., Garg, G., Marschner, S. R., Horowitz, M., Levoy, M., and Lensch, H. P. A. (2005). Dual photography. ACM SIGGRAPH, 24(3):745-755.
  11. Terzopoulos, D. (1982). Multi-level reconstruction of visual surfaces: Variational principles and finite element representations. A.I. Memo 671, MIT.
  12. Tu, P. and Mendonc¸a, P. R. S. (2003). Surface reconstruction via Helmholtz reciprocity with a single image pair. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 541-547.
  13. Tu, P., Mendonc¸a, P. R. S., Ross, J., and Miller, J. (2003). Surface registration with a Helmholtz reciprocity image pair. In IEEE Workshop on Color and Photometric Methods in Computer Vision.
  14. Zickler, T. (2006). Reciprocal image features for uncalibrated helmholtz stereopsis. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 1801-1808.
  15. Zickler, T., Belhumeur, P. N., and Kriegman, D. J. (2002a). Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. In Proc. European Conference on Computer Vision, volume III, pages 869-884.
  16. Zickler, T. E., Belhumeur, P. N., and Kriegman, D. J. (2002b). Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. International Journal of Computer Vision, 49(2/3):215-227.
  17. Zickler, T. E., Belhumeur, P. N., and Kriegman, D. J. (2003a). Toward a stratification of Helmholtz stereopsis. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 548-555.
  18. Zickler, T. E., Ho, J., Kriegman, D. J., Ponce, J., and Belhumeur, P. N. (2003b). Binocular Helmholtz stereopsis. In Proc. IEEE International Conference on Computer Vision, pages 1411-1417.
  19. We start by writing the partial derivatives of F with respect to iˆlk ; for any index k in {1, . . . , N}, we have:
Download


Paper Citation


in Harvard Style

Guillemaut J., Drbohlav O., Illingworth J. and Šára R. (2008). A MAXIMUM LIKELIHOOD SURFACE NORMAL ESTIMATION ALGORITHM FOR HELMHOLTZ STEREOPSIS . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 352-359. DOI: 10.5220/0001083203520359


in Bibtex Style

@conference{visapp08,
author={Jean-Yves Guillemaut and Ondřej Drbohlav and John Illingworth and Radim Šára},
title={A MAXIMUM LIKELIHOOD SURFACE NORMAL ESTIMATION ALGORITHM FOR HELMHOLTZ STEREOPSIS},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={352-359},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001083203520359},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - A MAXIMUM LIKELIHOOD SURFACE NORMAL ESTIMATION ALGORITHM FOR HELMHOLTZ STEREOPSIS
SN - 978-989-8111-21-0
AU - Guillemaut J.
AU - Drbohlav O.
AU - Illingworth J.
AU - Šára R.
PY - 2008
SP - 352
EP - 359
DO - 10.5220/0001083203520359