EVALUATION OF LOCAL ORIENTATION FOR TEXTURE CLASSIFICATION
Dana Elena Ilea, Ovidiu Ghita, Paul F. Whelan
2008
Abstract
The aim of this paper is to present a study where we evaluate the optimal inclusion of the texture orientation in the classification process. In this paper the orientation for each pixel in the image is extracted using the partial derivatives of the Gaussian function and the main focus of our work is centred on the evaluation of the local dominant orientation (which is calculated by combining the magnitude and local orientation) on the classification results. While the dominant orientation of the texture depends strongly on the observation scale, in this paper we propose to evaluate the macro-texture by calculating the distribution of the dominant orientations for all pixels in the image that sample the texture at micro-level. The experimental results were conducted on standard texture databases and the results indicate that the dominant orientation calculated at micro-level is an appropriate measure for texture description.
References
- Brodatz P., 1966. Textures: A Photographic Album for Artists and Designers. Dover Publications, New York, 1966.
- Canny J., 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), pp. 679-698.
- Chellappa R., Kashyap R.L., Manjunath B.S., 1998. Model based texture segmentation and classification, In The Handbook of Pattern Recognition and Computer Vision, C.H. Chen, L.F. Pau and P.S.P Wang (Editors) World Scientific Publishing.
- Chang C., Lin C.J., 2001. LIBSVM: A library for support vector machines, www.csie.ntu.edu.tw/cjlin/libsvm.
- Dyer C.R., Hong T., Rosenfeld A., 1980. Texture classification using gray level co-occurrence based on edge maxima, IEEE Transactions on Systems, Man, and Cybernetics, 10, pp. 158-163.
- Flores M.A., Leon L.A., 2003. Texture classification trough multiscale orientation histogram analysis, In Scale Space Methods in Computer Vision, LNCS 2695, pp. 479-493.
- Germain C., Da Costa J.P., Lavialle O., Baylou P., 2003. Multiscale estimation of vector field anisotropy application to texture characterization, Signal Processing, 83, pp. 1487-1503.
- Haralick R.M., 1979. Statistical and structural approaches to texture, In Proc of IEEE, 67, pp. 786-804.
- Kass M, Witkin A, 1987. Analyzing oriented patterns, Computer Vision, Graphics, and Image Processing, 37(3), pp. 362-385.
- Liu X., Wang D., 2003. Texture classification using spectral histograms”, IEEE Transactions on Image Processing, 12(6), pp. 661-670.
- Manjunath B.S., Ma W.Y., 1996. Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), pp. 837- 842.
- Marimon D., Touradj E., 2007. Orientation histogrambased matching for region tracking, In 8th International Workshop on Image Analysis for Multimedia Interactive Services, Santorini, Greece.
- Materka A., Strzelecki M., 1998. Texture analysis methods - A review, Technical Report, University of Lodz, Cost B11 Report.
- Ojala T., Pietikainen M., Maenpaa T., 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), pp. 971-987.
- Ojala T., Maenpäa T., Pietikainen M., Viertola J., Kyllonen J., Huovinen S., 2002. Outex - a new framework for empirical evaluation of texture analysis algorithms, In Proc. 16th International Conference on Pattern Recognition, vol. 1, Quebec, Canada, pp. 701- 706.
- Petrou M., Sevilla P.G., 2006. Image Processing: Dealing with Texture, John Wiley & Sons, 2006.
- Sanchez-Yanez R.E, Kurmyshev E.V., Fernandez A., 2003. One-class texture classifier in the CCR feature space, Pattern Recognition Letters, 24, pp. 1503-1511.
- Zhou J., Xin L., Zhang D., 2003. Scale-orientation histogram for texture image retrieval, Pattern Recognition, 36, pp. 1061-1063.
Paper Citation
in Harvard Style
Ilea D., Ghita O. and Whelan P. (2008). EVALUATION OF LOCAL ORIENTATION FOR TEXTURE CLASSIFICATION . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 357-364. DOI: 10.5220/0001084603570364
in Bibtex Style
@conference{visapp08,
author={Dana Elena Ilea and Ovidiu Ghita and Paul F. Whelan},
title={EVALUATION OF LOCAL ORIENTATION FOR TEXTURE CLASSIFICATION},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={357-364},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001084603570364},
isbn={978-989-8111-21-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - EVALUATION OF LOCAL ORIENTATION FOR TEXTURE CLASSIFICATION
SN - 978-989-8111-21-0
AU - Ilea D.
AU - Ghita O.
AU - Whelan P.
PY - 2008
SP - 357
EP - 364
DO - 10.5220/0001084603570364