FINGERPRINT IMAGE SEGMENTATION BASED ON BOUNDARY VALUES

M. Usman Akram, Anam Tariq, Shahida Jabeen, Shoab A. Khan

2008

Abstract

A critical step in automatic fingerprint identification system(AFIS) is the accurate segmentation of fingerprint images. The objective of fingerprint segmentation is to extract the region of interest(ROI).We present a method for fingerprint segmentation based on boundary area gray-level values. We also present a modified traditional gradient based segmentation technique. The enhanced segmentation technique is tested on FVC2004 database and results show that our modified method gives better results in all cases.

References

  1. A. K. Jain, L. Hong, S. P. and Bolle, R. (Sept. 1997). An identity authentication system using fingerprints. In Proc. IEEE, vol. 85, pp. 1365-1388.
  2. A.Bazen and S.Gerez (2001). Segmentation of fingerprint images. In Proc. Workshop on Circuits Systems and Signal Processing (ProRISC 2001), pp. 276-280.
  3. A.K Jain, H. L. and Boole, R. (1997). One-line fingerprint verification. In IEEE Trans. PAMI, Vol.19,No.4, pp.302-314.
  4. Bazen, A. and Gerez., S. (2000). Directional field computation for fingerprints based on the principal component analysis of local gradients. In ProRISC 2000 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands.
  5. E.Zhu, Yin, J. a. (2006). A systematic method for fingerprint ridge orientation estimation and image segmentation. In Pattern Recognition,Vol.39, No.8, pp.1452- 1472.
  6. F.Alonso-Fernandez, J.Fierrez-Aguilar, J.-G. (2005). An enhanced gabor filter-based segmentation algorithm for fingerprint recognition systems. In Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis(ISPA 2005). pp. 239-244.
  7. FVC (2004). Finger print verification contest 2004. In Available at (http://bias.csr.unibo.it/fvc2004.html).
  8. Lim and S.Jae (1990). Two-Dimensional Signal Image Processing.
  9. LinLin Shen, A. K. and Koo, W. (2001). Quality measures of fingerprint images. In 3rd Audio and Video-Based Person Authentication, AVBPA ,pp. 266-271.
  10. Maio, D. and Maltoni, D. (Jan 1997). Direct gray-scale minutiae detection in fingerprints. In IEEE Trans. on Pattern Analysis and Machine Inteligence, vol. 19, pp. 27-40.
  11. Mehtre and Chatterjee (1989). Segmentation of fingerprint images - a composite method. In Pattern Recognition, Vol.22, No 4, pp.381-385.
  12. Mehtre, B.M., M. N. K.-S. C. (1987). Segmentation of fingerprint images using the directional image. In Pattern Recognition, Vol 20, No.4, pp.429-435.
  13. N.K.Ratha, S. and A.K.Jain (1995). Adaptive flow orientation-based feature extraction in fingerprint images. In Pattern Recognition, Vol.28, No.11, pp.1657- 1672.
  14. Zhou, J. and Gu, J. (JUNE 2004). A model-based method for the computation of fingerprints orientation field. In IEEE Trans. on Image Processing, VOL. 13, No. 6, pp.821-835.
Download


Paper Citation


in Harvard Style

Usman Akram M., Tariq A., Jabeen S. and Khan S. (2008). FINGERPRINT IMAGE SEGMENTATION BASED ON BOUNDARY VALUES . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 134-138. DOI: 10.5220/0001089401340138


in Bibtex Style

@conference{visapp08,
author={M. Usman Akram and Anam Tariq and Shahida Jabeen and Shoab A. Khan},
title={FINGERPRINT IMAGE SEGMENTATION BASED ON BOUNDARY VALUES},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={134-138},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001089401340138},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - FINGERPRINT IMAGE SEGMENTATION BASED ON BOUNDARY VALUES
SN - 978-989-8111-21-0
AU - Usman Akram M.
AU - Tariq A.
AU - Jabeen S.
AU - Khan S.
PY - 2008
SP - 134
EP - 138
DO - 10.5220/0001089401340138