VARIATIONAL BAYES WITH GAUSS-MARKOV-POTTS PRIOR MODELS FOR JOINT IMAGE RESTORATION AND SEGMENTATION

Hacheme Ayasso, Ali Mohammad-Djafari

2008

Abstract

In this paper, we propose a family of non-homogeneous Gauss-Markov fields with Potts region labels model for images to be used in a Bayesian estimation framework, in order to jointly restore and segment images degraded by a known point spread function and additive noise. The joint posterior law of all the unknowns ( the unknown image, its segmentation hidden variable and all the hyperparameters) is approximated by a separable probability laws via the variational Bayes technique. This approximation gives the possibility to obtain practically implemented joint restoration and segmentation algorithm. We will present some preliminary results and comparison with a MCMC Gibbs sampling based algorithm.

References

  1. Ayasso, H. and Mohammad-Djafari, A. (2007). Approche bayésienne variationnelle pour les problèmes inverses. application en tomographie microonde. Technical report, Rapport de stage Master ATS, Univ Paris Sud, L2S, SUPELEC.
  2. Bouman, C. and Sauer, K. (1993). A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Transaction on image processing, pages 296- 310.
  3. Choudrey, R. and Roberts, S. (2003). Variational Mixture of Bayesian Independent Component Analysers. Neural Computation, 15(1).
  4. Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., and Penny, W. (2006). Variational free energy and the laplace approximation. Neuroimage, (2006.08.035). Available Online.
  5. Geman, S. and McClure, D. (1985). Bayesian image analysis: Application to single photon emission computed tomography. American Statistical Association, pages 12-18.
  6. Ghahramani, Z. and Jordan, M. (1997). Factorial Hidden Markov Models. Machine Learning, (29):245-273.
  7. Green, P. (1990). Bayesian reconstructions from emission tomography data using amodified EM algorithm. IEEE Transaction on Medical Imaging, pages 84-93.
  8. Nasios, N. and Bors, A. (2004). A variational approach for bayesian blind image deconvolution. IEEE Transactions on Signal Processing, 52(8):2222-2233.
  9. Nasios, N. and Bors, A. (2006). Variational learning for gaussian mixture models. IEEE Transactions on Systems, Man and Cybernetics, Part B, 36(4):849-862.
  10. Penny, W. and Friston, K. (2003). Mixtures of general linear models for functional neuroimaging. IEEE Transactions on Medical Imaging, 22(4):504-514.
  11. Penny, W., Kiebel, S., and Friston, K. (2003). Variational bayesian inference for fmri time series. NeuroImage, 19(3):727-741.
  12. Penny, W. and Roberts, S. (1998). Bayesian neural networks for classification: how useful is the evidence framework? Neural Networks, 12:877-892.
  13. Penny, W. and Roberts, S. (1999). Dynamic models for nonstationary signal segmentation. Computers and Biomedical Research, 32(6):483-502.
  14. Penny, W. and Roberts, S. (2002). Bayesian multivariate autoregresive models with structured priors. IEE Proceedings on Vision, Image and Signal Processing, 149(1):33-41.
  15. Roberts, S., Husmeier, D., Penny, W., and Rezek, I. (1998). Bayesian approaches to gaussian mixture modelling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1133-1142.
  16. Roberts, S. and Penny, W. (2002). Variational bayes for generalised autoregressive models. IEEE Transactions on Signal Processing, 50(9):2245-2257.
  17. Tikhonov (1963). Solution of incorrectly formulated problems and the regularization method. Sov. Math., pages 1035-8.
Download


Paper Citation


in Harvard Style

Ayasso H. and Mohammad-Djafari A. (2008). VARIATIONAL BAYES WITH GAUSS-MARKOV-POTTS PRIOR MODELS FOR JOINT IMAGE RESTORATION AND SEGMENTATION . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: BAIPCV, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 571-576. DOI: 10.5220/0001091805710576


in Bibtex Style

@conference{baipcv08,
author={Hacheme Ayasso and Ali Mohammad-Djafari},
title={VARIATIONAL BAYES WITH GAUSS-MARKOV-POTTS PRIOR MODELS FOR JOINT IMAGE RESTORATION AND SEGMENTATION},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: BAIPCV, (VISIGRAPP 2008)},
year={2008},
pages={571-576},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001091805710576},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: BAIPCV, (VISIGRAPP 2008)
TI - VARIATIONAL BAYES WITH GAUSS-MARKOV-POTTS PRIOR MODELS FOR JOINT IMAGE RESTORATION AND SEGMENTATION
SN - 978-989-8111-21-0
AU - Ayasso H.
AU - Mohammad-Djafari A.
PY - 2008
SP - 571
EP - 576
DO - 10.5220/0001091805710576