SEMI-AUTOMATIC PARTITIONING BY VISUAL SNAPSHOPTS

Rosa Matias, João-Paulo Moura, Paulo Martins, Fátima Rodrigues

2008

Abstract

It is stated that a closer intervention of experts in knowledge discovery can complement and improve the effectiveness of results. Normally, in data mining, automated methods display final results through visualization methods. A more active intervention of experts on automated methods can bring enhancements to the analysis; No meanwhile that approach raises questions about what is a relevant stopping stage. In this work, efforts are made to couple automatic methods with visualization methods in the context of partitioning algorithms applied to spatial data. A data mining workflow is presented with the following concepts: data mining transaction, data mining save point and data mining snapshot. Moreover to display results, novel visual metaphors are changed allowing a better exploration of clustering. In knowledge discovery, experts validate final results; certainly it would be appropriate to them validate intermediate results, avoiding, for instance, losing time, when in disagreement, starting it with new hypnoses or allow data reduction by disable an intermediate cluster from the next stage.

References

  1. Ankerst, M. (2000). Visual Data Mining (PhD Thesis). Munich: Institute of Computer Science, University of Munich.
  2. Demsar, U. (2006). Data Mining of Geospatial Data: Combining Visual and Automatic Methods. Stockholm: Royal Institute of Technology (KTH).
  3. desJardins, M., MacGlashan, J., & Ferraioli, J. (2007 ). Interactive Visual Clustering. Proceedings of the 12th international conference on Intelligent user interfaces (pp. 361 - 364 ). Honolulu, Hawaii, USA : ACM Press
  4. Gahegan, M., & Brodaric, B. (2002). Computational and Visual Support for Geographical Knowledge Construction: Filling in the gaps between exploration and explanation. Advances in Spatial Data Handling, Proceedings of the 10th International Symposium on Spatial Data Handling.
  5. Guo, D., Chen, J., MacEachren, A. M., & Liao, K. (2006). A Visual Inquiry System for Space-Time and Multivariable Patterns (VIS-STAMP). Transactions on Visualization and Computer Graphics , 12 (6), 1461- 1474.
  6. Guo, D., Gahegan, M., MacEachren, A. M., & Zhou, B. (2005). Multivariate Analysis and Geovisualization with Integrated Geographic Knowledge Discovery Approach. Cartography and Geographic Information Science , 32 (2), 113-132.
  7. Guo, D., Peuquet, D. J., & Gahegan, M. (2003). ICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata. GeoInformatica (pp. 229- 253). The Nertherlands: Kluwer Academic Publishers.
  8. Hoffman, P. (1999). Table Visualization: A Formal Model and Its Applications (PhD Thesis). Lowell LA, USA: University of Massachusetts Lowell.
  9. Ibrahim, L. F. (2005). Using Clustering Algorithm CWSPPAM for Rural Network Planning. Third International Conference on Information Technology and Applications (ICITA'05) (pp. 280-283). Sydney: IEEE Computer Society.
  10. Imrich, P., Mueller, K., Mugno, R., Imre, D., Zelenyuk, A., & Zhu, W. (2002). interactive Poster:Visual Data Mining with the Interactive Dendogram. Information Visualization Symposium.
  11. Inselberg, A. (1985). The plane with parallel coordinates. Visual Computer , 1 (4), 69-81.
  12. Jiang, B. (2004). Spatial Clustering for Mining Knowledge in Support of Generalization Process in GIS. ICA Workshop on Generalisation and Multiple Representation. Leicester, United Kingdom.
  13. Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons.
  14. Kantardzic, M. (2003). Data Mining: Concepts, Models, Methods, and Algorithms. Danvers, MA, USA: John Wiley & Sons.
  15. Keim, D. A. (2002). Information Visualization and Visual Data Mining. IEEE Transactions on Visualization and Computer Graphics , 100-1007.
  16. Kriegel, H.-P., Kunath, P., Pfeifle, M., & Renz, M. (2006). ViEWNet: Visual Exploration of Region-Wide Traffic Networks. Data Engineering, 2006. ICDE 7806. Proceedings of the 22nd International Conference on (pp. 166-166). Atlanta, USA: IEEE Computer Society.
  17. Koua, E. L., MacEachren, A., & Kraak, M.-J. (2006). Evaluting the usability of visualization methods in an exploratory geovisualization environment. International Journal of Geographical Information Science , 20 (4), 425-448.
  18. Liu, W., Seto, K. C., & Sun, Z. (2005). Urbanization Prediction with ART-MMAP Neural Network Based Spatial-Temporal Data Mining Method. 5th International Symposium Remote Sensing of Urban Area (URS 2005), XXXVI. Tempe, AZ, USA.
  19. May, M., & Savinov, A. (2004). SPIN! AN ENTERPRISE ARCHITECTURE FOR DATA MINING AND VISUAL ANALYSIS OF SPATIAL DATA. In B. Kovalerchuk, & J. Schwing, Visual and Spatial Analysis (pp. 293-317). Dordrecht, The Nertherlands: Springer.
  20. Nam, E. J., Han, Y., Mueller, K., Zelenyuk, A., & Imre, D. (2007). ClusterScultor: A Visual analytics Tool for High-Dimensional Data. IEEE Symposium on Visual Analytics Science and Technology 2007 . Sacramento, CA.
  21. Ng, R. T., & Han, J. (2002). CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transaction on Knowledge and Data Enginnering , 14 (5), 1003-1016.
  22. Ng, R. T., & Han, J. (1994). Efficient and Effective Clustering Methods for Spatial Data Mining. 20th VLDB Conference. Santiago, Chile.
  23. Schulz, H.-J., Nocke, T., & Schumann, H. (2006). A Framework of Visual Data Mining of Structures. 29th Australasian Computer Science Conference (pp. 157- 166). Hobart, Australia: Australian Computer Society, Inc.
  24. Tung, A. K., Hou, J., & Han, J. (2001). Spatial Clustering in the Presence of Obstacles. 17th International Conference on Data Engineering (ICDE'01). washington, DC, USA: IEEE Computer Society.
  25. Torun, A., & Duzgun, S. (2006). Using Spatial Data Mining Techniques to Reveal Vulnerability of People and Places Due to Oil Transportation and Accidents: A Case Study of Istanbul Strait. Proceedings of the ISPRS Vienna 2006 Symposium, (pp. 43-48). Vienna.
  26. Wan, L.-H., Li, Y.-J., Liu, W.-Y., & Zhang, D.-Y. (2005). Application and Study of Spatial Cluster and Customer Partitioning. Fourth International Conference on Machine Learning and Cybernetics (pp. 1701-1706). Guangzhou: IEEE.
  27. Wang, X., & Hamilton, H. (2005). Clustering Spatial Data in the Presence of Obstacles. International Journal on Artificial Intelligence , 14, 177-198.
  28. Zhang, X., Wang, J., & Wu, F. (2006). Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoid. IJCSNS International Journal of Computer Science and Network Security , 6 (10), 109-114.
Download


Paper Citation


in Harvard Style

Matias R., Moura J., Martins P. and Rodrigues F. (2008). SEMI-AUTOMATIC PARTITIONING BY VISUAL SNAPSHOPTS . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8111-37-1, pages 78-86. DOI: 10.5220/0001709400780086


in Bibtex Style

@conference{iceis08,
author={Rosa Matias and João-Paulo Moura and Paulo Martins and Fátima Rodrigues},
title={SEMI-AUTOMATIC PARTITIONING BY VISUAL SNAPSHOPTS},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2008},
pages={78-86},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001709400780086},
isbn={978-989-8111-37-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - SEMI-AUTOMATIC PARTITIONING BY VISUAL SNAPSHOPTS
SN - 978-989-8111-37-1
AU - Matias R.
AU - Moura J.
AU - Martins P.
AU - Rodrigues F.
PY - 2008
SP - 78
EP - 86
DO - 10.5220/0001709400780086