CAPTURING THE HUMAN ACTION SEMANTICS USING A QUERY-BY-EXAMPLE
Anna Montesanto, Paola Baldassarri, A. F. Dragoni, G. Vallesi, P. Puliti
2008
Abstract
The paper describes a method for extracting human action semantics in video’s using queries-by-example. Here we consider the indexing and the matching problems of content-based human motion data retrieval. The query formulation is based on trajectories that may be easily built or extracted by following relevant points on a video, by a novice user too. The so realized trajectories contain high value of action semantics. The semantic schema is built by splitting a trajectory in time ordered sub-sequences that contain the features of extracted points. This kind of semantic representation allows reducing the search space dimensionality and, being human-oriented, allows a selective recognition of actions that are very similar among them. A neural network system analyzes the video semantic similarity, using a two-layer architecture of multilayer perceptrons, which is able to learn the semantic schema of the actions and to recognize them.
References
- Bobick A. and Davis J., 2001 “The Recognition of Human Movement Using Temporal Templates,” IEEE Transactions on Pattern Recognition and Machine Intelligent, vol.23, pp. 257-267.
- Bobick A.F. and Wilson A.D., 1997 “A State-Based Technique to the Representation and Recognition of Gesture”, IEEE Transactions on Pattern Analysis and Machine Intelligent, Vol.19, pp.1325-1337.
- Bouget J.Y., 1999 “Pyramidal Implementation of the Lucas Kanade Feature Tracker. Description of the Algorithm”, Intel Corporation, internal report.
- Brand M. and Kettnaker V., 2000 “Discovery and Segmentation of Activities in Video,” IEEE Transactions on Pattern Analysis and Machine Intelligent, Vol.22, pp.844-851.
- Hu W., Tan T.,, Wang L., and Maybank S., 2004 “A Survey on Visual Surveillance of Object Motion and Behaviors” IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, Vol. 34, No. 3.
- Johansson G., 1973 “Visual Perception of Biological Motion and Model of its Analysis”, Perception and Psychophysics, Vol.14, pp.201-211.
- Kang H., Lee C.-W., and Jung K., 2004 “RecognitionBased Gesture Spotting in Video Games”, Pattern Recognition Letters, Vol.25, No. 15, pp. 1701-1714.
- Marchand-Maillet S., 2000 “Content-based Video Retrieval: An overview”, Technical Report Vision.
- Meier U., Stiefelhagen R., Yang J., and Waibel A., 2000 “Toward unrestricted lip reading,” International Journal on Pattern Recognition and Artificial Intelligent, Vol.14, no.5, pp.571-585.
- Oliver N. M., Rosario B., and Pentland A. P., 2000 “A Bayesian Computer Vision System for Modeling Human Interactions,” IEEE Transactions on Pattern Analysis and Machine Intelligent, Vol.22, pp.831-843.
- Owens J. and Hunter A., 2000 “Application of the SelfOrganizing Map to Trajectory Classification,” Proceedings of IEEE International Workshop on Visual Surveillance, pp.77-83.
- Rumelhart D., Ortony A., 1964 “The Representation of Knowledge in Memory” In R.C. Anderson, R.J. Spiro, W.E. Montague (Eds.) Schooling and the acquisition of knowledge pp.99-135. Hillsdale, NJ: Erlbaum.
- Rumelhart D.E., Hinton G.E., and Williams R.J., 1986 “Learning Representations by Back-propagation of Errors”, Nature, Vol.323, pp.533-536.
- Runeson S., 1994 “Perception of Biological Motion: the KSD-Principle and the Implications of a Distal Versus Proximal Approach”. In G. Jansson, W. Epstein & S. S. Bergström (Eds.), Perceiving events and objects, pp.383-405.
- Sumpter N. and Bulpitt A., 2000 “Learning SpatioTemporal Patterns for Predicting Object Behaviour,” Image and Vision Computing, Vol.18, No.9, pp.697- 704.
- Venkatesh Babu R. and Ramakrishnan K.R., 2004 “Recognition of Human Actions using Motion History Information Extracted from the Compressed Video”, Image and Vision Computing, Vol.22, No.8, pp.597- 607.
- Viviani P. and Schneider R., 1991 “A Developmental Study of the Relationship Between Geometry and Kinematics in Drawing Movements” Journal of Experimental Psychology: Human Perception and Performance, Vol.17, pp.198-298.
- Yoon H., Soh J., Bae Y. J., Yang H.S., 2001 “Hand Gesture Recognition Using Combined Features of Location, Angle, and Velocity”, Pattern Recognition, Vol.34, pp.1491-1501.
Paper Citation
in Harvard Style
Montesanto A., Baldassarri P., F. Dragoni A., Vallesi G. and Puliti P. (2008). CAPTURING THE HUMAN ACTION SEMANTICS USING A QUERY-BY-EXAMPLE . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2008) ISBN 978-989-8111-60-9, pages 356-363. DOI: 10.5220/0001932703560363
in Bibtex Style
@conference{sigmap08,
author={Anna Montesanto and Paola Baldassarri and A. F. Dragoni and G. Vallesi and P. Puliti},
title={CAPTURING THE HUMAN ACTION SEMANTICS USING A QUERY-BY-EXAMPLE},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2008)},
year={2008},
pages={356-363},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001932703560363},
isbn={978-989-8111-60-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2008)
TI - CAPTURING THE HUMAN ACTION SEMANTICS USING A QUERY-BY-EXAMPLE
SN - 978-989-8111-60-9
AU - Montesanto A.
AU - Baldassarri P.
AU - F. Dragoni A.
AU - Vallesi G.
AU - Puliti P.
PY - 2008
SP - 356
EP - 363
DO - 10.5220/0001932703560363