IN-SITU, REAL-TIME BIOREACTOR MONITORING BY FIBER OPTICS SENSORS

R. G. Silva, J. S. Silva, A. A. Vicente, J. A. Teixeira, R. C. Martins

2009

Abstract

One of the most studied bioprocesses is fermentation by yeasts. Although this is true, there is still the lack of real-time instrumentation that is capable of providing detailed information on metabolic state of fermentations. In this research we explore the possibility of using UV-VIS-SWNIR spectroscopy as a high-output, non-destructive and multivariate methodology of monitoring beer fermentation. We herein report the implementation of the a fibber optics sensor and the capacity for detecting key parameters by partial least squares regression for biomass, extract, pH and total sugars. Results show that UV-VIS-SWNIR is a robust technique for monitoring beer fermentations, being able to provide detailed information spectroscopic fingerprinting of the process. Calibrations were possible to obtain for all the studied parameters with R2 of 0.85 to 0.94 in the UV-VIS region and 0.95 to 0.97 in the VIS-SWNIR region. This preliminary study allowed to conclude that further improvements in experimental methodology and signal processing may turn this technique into a valuable instrument for detailed metabolic studies in biotechnology.

References

  1. Alison, A., John, C., Seetharaman, V., Liliana, M., and Pankaj, M. (2000). At-line monitoring of a submerged filamentous bacterial cultivation using near-infrared spectroscopy. volume 27. Enzyme and microbial technology.
  2. Avantes (2005). http://www.avantes.com.
  3. Avantes (2007). Avasoft 7.0. http://www.avantes.com.
  4. Bruice, P. Y. (2006). Organic Chemestry: Study Guide and Solutions Manual. Prentice Hall, 5 edition.
  5. Cooper, J., Wise, K., Welch, W., Sumner, M., Wilt, B., and Bledsoe, R. (1997). Comparison of near-ir, raman, and mid-ir spectroscopies for the determination of btex in petroleum fuels. volume 51. Applied Spectroscopy.
  6. Denham, M. (1995). Implementing partial least squares. 5:191-202.
  7. Denham, M. (1997). Prediction intervals in partial least squares. 11:39-52.
  8. Faust, C. (1992). Near-infrared spectroscopy for bioprocess monitoring and control. Royal Society of Chemistry.
  9. Gallager, N. B., Blake, T., and Gassman, P. (2005). Application of extended inverse scattering correction to mid-infrared reflectance of soil. 19:271-281.
  10. Geladi, P. and Kowalsky, B. (1986). Partial least-squares regression a tutorial. volume 185. Analytica Chimica Acta.
  11. Geladi, P. and Kowalsky, B. (1988). Partial least squares regression: a tuturial. 185:1-17.
  12. Jong, S. (2003). Simpls: an alternative approach to partial least squares regression. volume 18. Chemometrics and Intelligent Laboratory Systems.
  13. Majara, M., Mochaba, F. M., O'connor-cox, E. S. C., Axcell, B. C., and Alexander, A. (1998). Yeast protein measurement using near infrared reflectance spectroscopy. volume 104, 143-146. Journal of the Institute of Brewing.
  14. Martens, H. and Naes, T. (1989). Multivariate calibration. Wiley.
  15. Martens, H., Nielsen, J. P., and Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures. In Analytical Chemistry 75(9): 394-404. American Chemical Society.
  16. Martens, H. and Stark, E. (1991). Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. In Journal of Pharmaceutical and Biomedical Analysis 9: 625-635. American Chemical Society.
  17. Metrohm (2008). Metrohm http://www.metrohm.com/.
  18. Ocean-Optics (2008). Ocean http://www.oceanoptics.com.
  19. Ozaki, Y., Sasic, S., and Jiang, J. (2001). How can we unravel complicated near infrared spectra? - recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region. Journal of Infrared Spectroscopy, 9:63- 95.
  20. R-Project (2008). R: A programming environment for data analysis and graphics. URL: http://www.r-project.org.
  21. Rhiel, M., Cohen, M., Murhammer, D., and Arnold, M. (2002). Nondestructive near-infrared spectroscopic measurement of multiple analytes in undiluted samples of serum-based cell culture media. volume 77. Biotechnology and Bioengineering.
  22. Schemidt-haensch (2008). abbe refractometer. haensch.com/products.html?L=1.
  23. Ar12 schmidt+haensch http://www.schmidt-
  24. Schugerl, K. (2001). Progress in monitoring, modeling and control of bioprocesses during the last 20 years. volume 85, 149-173. Journal of Biotechnology.
  25. Sigma (2008). Sigma 4k15 centrifuge. http://www.sigmazentrifugen.de.
  26. Stavitzky, A. and Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procuderes. Analytical Chemistry 36(8): 1627-1639.
  27. Stuart, B. (1997). Biological applications of infrared spectroscopy. University of Greenwich, UK. John Wiley & Sons, Ltd.
  28. Wold, S., Martens, H., and Wold, H. (1983). The multivariate calibration-problem in chemistry solved by the pls method. volume 973. Lecture Notes in Mathematics.
  29. Workman, J. (1993). A review of process near infrared spectroscopy: 1980-1994. pages 221-225. Journal Near Infrared Spectroscopy.
  30. Yano, T., Aimi, T., Nakano, Y., and Tamai, P. (1997). Prediction of the concentrations of ethanol and acetic acid in the culture broth of a rice vinegar fermentation using near-infrared spectroscopy. volume 84. Journal of Fermentation and Bioengineering.
  31. Yeung, K., Hoare, M., Thornhill, N., Williams, T., and Vaghjiani, J. (1999). Near-infrared spectroscopy for bioprocess monitoring and control. volume 63. Biotechnology and Bioengineering.
Download


Paper Citation


in Harvard Style

G. Silva R., S. Silva J., A. Vicente A., A. Teixeira J. and C. Martins R. (2009). IN-SITU, REAL-TIME BIOREACTOR MONITORING BY FIBER OPTICS SENSORS . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009) ISBN 978-989-8111-65-4, pages 327-336. DOI: 10.5220/0001549503270336


in Bibtex Style

@conference{biosignals09,
author={R. G. Silva and J. S. Silva and A. A. Vicente and J. A. Teixeira and R. C. Martins},
title={IN-SITU, REAL-TIME BIOREACTOR MONITORING BY FIBER OPTICS SENSORS},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)},
year={2009},
pages={327-336},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001549503270336},
isbn={978-989-8111-65-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)
TI - IN-SITU, REAL-TIME BIOREACTOR MONITORING BY FIBER OPTICS SENSORS
SN - 978-989-8111-65-4
AU - G. Silva R.
AU - S. Silva J.
AU - A. Vicente A.
AU - A. Teixeira J.
AU - C. Martins R.
PY - 2009
SP - 327
EP - 336
DO - 10.5220/0001549503270336