YEAST METABOLIC STATE IDENTIFICATION BY FIBER OPTICS SPECTROSCOPY

C. C. Castro, J. S. Silva, V. V. Lopes, R. C. Martins

2009

Abstract

In this manuscript we explore the feasibility of using LWUV-VIS-SWNIR (340 - 1100 nm) spectroscopy to classify Saccharomyces cerevisiae colony structures in YP agar and YPD agar, under different growth conditions, such as: i) no alcohol; ii) 1 % (v/v) Ethanol; iii) 1 % (v/v) 1-Propanol; iv) 1 % (v/v) 1- butanol; v) 1 % (v/v) Isopropanol; vi) 1 % (v/v) (±)-1-Phenylethanol; vii) 1 % (v/v) Isoamyl alcohol; viii) 1 % (v/v) tert-Amyl alcohol (2-Methyl-2-butanol); and ix) 1 % (v/v) Amyl alcohol. Results show that LWUV-VISSWNIR spectroscopy has the potential for yeasts metabolic state identification once the spectral signatures of colonies differs from each others, being possible to acheive 100% of classification in UV-VIS and VISSWNIR. The UV-VIS region present high discriminant information (350-450 nm), and different responses to UV excitation were obtained. Therefore, high precision is obtained because UV-VIS and VIS-NIR exhibit different kinds of information. In the future, high precision analytical chemistry techniques such as mass spectroscopy and molecular biology transcriptomic studies should be performed in order to understand the detailed cell metabolism and genomic phenomena that characterize the yeast colony state.

References

  1. Choi, S., Lee, C., Lee, J., Park, J., and Lee, I. (2005). Fault detection and identification of non-linear processes based on kernel pca. Chemometrics and intelligent laboratory systems, 75:55-67.
  2. Conlin, A., Martin, E., and Morris, A. (2000). Confidence limits for contribution plots. Journal of Chemometrics, 14:725-736.
  3. Coyle, J. (1989). Introduction to Organic PhotoChemistry. John Wiley & Sons, London.
  4. Denney, R. and Sinclair, R. (1987). Visible and ultraviolet spectroscopy. John Wiley & Sons, London.
  5. Devices, A. S. (2005). Near-ir absorption bands.
  6. Dickinson, J. (1994). Irreversible formation of pseudohyphae by haploid Saccharomyces cerevisiae. FEMS Microbiol. Lett., 119:99-104.
  7. Dickinson, J. (2008). Filament formation in Saccharomyces cerevisiae - a review. Folia Microbiol., 53(1):3-14.
  8. Doytchinova, F. and Flower, D. (2006). Modeling the peptide t-cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique. Journal of Medicinal Chemistry, 49(7):2193-2199.
  9. Dunia, R., Qin, S., Edgar, T., and T.J., M. (1996). dentification of faulty sensors using principal component analysis. American Institute of Chemical Engineers, 42:2797-2812.
  10. Dziuba, B., Babuchowski, A., Naleczb, D., and Niklewicz, M. (2007). Identification of lactic acid bacteria using ftir spectroscopy and cluster analysis. In International Dairy Journal 17: 183189. Elsevier.
  11. Gallager, N. B., Blake, T., and Gassman, P. (2005). Application of extended inverse scattering correction to mid-infrared reflectance of soil. Journal of Chemometrics, 19:271-281.
  12. Gerard, J., Berdell, R., and Christine, L. (2006). Microbiology: An Introduction. Benjamin Cummingsc, New York, 2th edition edition.
  13. Gimeno, C. J., Ljungdahl, P., Styles, C., and Fink, G. (1992). Unipolar cell divisions in yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and ras. Cell, 68:1077-1090.
  14. Jackson, J. and Mudholkar, G. (1979). Control procedures for residuals associated with principal component analysis. Technometrics, 21:341-349.
  15. Jolliffe, I. (1986). Principal Component Analysis. Springer, New York, USA.
  16. Klessinger, M. and Michl, J. (1995). Exited states and photochemistry of organic molecules. VCH Publishers, New York.
  17. Kron, S. and Gow, N. (1995). Budding yeast morphogenesis: gignaling, cytoskeleton and cell cycle. Curr.Opin.Cell Biol., 7:845-855.
  18. Manly, B. F. (1998). Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman and Hall, London, UK, 2nd edition.
  19. Martens, H., Nielsen, J. P., and Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures. In Analytical Chemistry 75(9): 394-404. American Chemical Society.
  20. Martens, H. and Stark, E. (1991). Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. In Journal of Pharmaceutical and Biomedical Analysis 9: 625-635. American Chemical Society.
  21. Micropack (2008). DH2000 BAL: Installation and operating manual. Ocean Optics, Ostfilden, Germany.
  22. Miller, P., Swanson, R., and Heckler, C. (2003). Contribution plots: the missing link in multivariate quality control. International Journal of Production Economics, 9:775-792.
  23. Optics, O. (2006). HR4000 - High resolution fiber optic spectrometers: instalation and operation manual. Ocean Optics, Dundelin, FL USA.
  24. Perkauparus, H., Grinter, H., and Therfall, T. (1994). Uv-Vis spectroscopy and its applications. Springer-Verlag, New York.
  25. Qin, S. (2003). Statistical process monitoring: basics and beyond. Journal of Chemometrics, 17:480-502.
  26. Rosah, P., Hard, M., Schmitt, M., Peschke, K. D., Ronneberger, O., Burkhart, H., Mutzkus, H. W., Laukers, M., Hofer, S., Thiele, H., and Popp, J. (2005). Chemotaxonomic identification of simple bacteria by micro-raman spectroscopy: application to clean-room-relevant biological contamination. A&EnvMicro, 71(3):1626-1637.
  27. Rua, D., Tobe, B., and Kron, S. (2001). Cell cycle control of yeast filamentous growth. Curr.Opin.Microbiol., 4:720-727.
  28. Savitzky, A. and Golay, M. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36:1627-1639.
  29. Sigma-Aldrich Quimica, S. (2008). Sigma, Life Science: Produtos para Investigao em Cilncias da Vida, 2008- 2009. Sigma-Aldrich, Portugal, 1nd edition.
  30. Silva, J., Martins, R. C., Vicente, A., and Teixeira, J. (2008). Feasibility of yeast and bacteria identification using lwuv-vis-swnir diffusive reflectance spectroscopy. volume 1.
  31. Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd, London, 1nd edition.
  32. Treskatis, S., Orgeldinger, V., Wolf, H., and Gilles, E. D. (1997). Morphological characterization of filamentous microorganisms in submerged cultures by on-line digital image analysis and pattern recognition. volume 53(2), pages 191-201.
Download


Paper Citation


in Harvard Style

C. Castro C., S. Silva J., V. Lopes V. and C. Martins R. (2009). YEAST METABOLIC STATE IDENTIFICATION BY FIBER OPTICS SPECTROSCOPY . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009) ISBN 978-989-8111-65-4, pages 169-178. DOI: 10.5220/0001551201690178


in Bibtex Style

@conference{biosignals09,
author={C. C. Castro and J. S. Silva and V. V. Lopes and R. C. Martins},
title={YEAST METABOLIC STATE IDENTIFICATION BY FIBER OPTICS SPECTROSCOPY},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)},
year={2009},
pages={169-178},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001551201690178},
isbn={978-989-8111-65-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2009)
TI - YEAST METABOLIC STATE IDENTIFICATION BY FIBER OPTICS SPECTROSCOPY
SN - 978-989-8111-65-4
AU - C. Castro C.
AU - S. Silva J.
AU - V. Lopes V.
AU - C. Martins R.
PY - 2009
SP - 169
EP - 178
DO - 10.5220/0001551201690178