USING EXPANDED MARKOV PROCESS AND JOINT DISTRIBUTION FEATURES FOR JPEG STEGANALYSIS
Qingzhong Liu, Andrew H. Sung, Mengyu Qiao, Bernardete M. Ribeiro
2009
Abstract
In this paper, we propose a scheme for detecting the information-hiding in multi-class JPEG images by combining expanded Markov process and joint distribution features. First, the features of the condition and joint distributions in the transform domains are extracted (including the Discrete Cosine Transform or DCT, the Discrete Wavelet Transform or DWT); next, the same features from the calibrated version of the testing images are extracted. A Support Vector Machine (SVM) is applied to the differences of the features extracted from the testing image and from the calibrated version. Experimental results show that this approach delivers good performance in identifying several hiding systems in JPEG images.
References
- Duda, R., Hart, P. and Stork, D., 2001. Pattern Classification, 2ed. New York, NY: Wiley.
- Fridrich, J., 2004. Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganographic Schemes, Lecture Notes in Computer Science, vol. 3200, Springer-Verlag, pp. 67-81.
- Fridrich J., Goljan, M. and Hogeam, D., 2002. Steganalysis of JPEG Images: Breaking the F5 Algorithm. Proc. of 5th Information Hiding Workshop, pp. 310-323.
- Guyon, I., Weston, J., Barnhill, S. and Vapnik, V., 2002. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46(1- 3):389-422.
- Harmsen, J and Pearlman, W., 2003, Steganalysis of Additive Noise Modelable Information Hiding. Proc. of SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents V. 5020, pp.131-142.
- Harmsen, J. and Pearlman, W., 2004. Kernel Fisher Discriminant for Steganalysis of JPEG Hiding Methods. Proc. of SPIE, Security, Steganography, and Watermarking of Multimedia Contents VI, vol 5306, pp.13-22.
- Hetzl, S. and Mutzel, P., 2005. A Graph-Theoretic Approach to Steganography. Lecture Notes in Computer Science, vol. 3677, pp. 119-128.
- Katzenbeisser, S. and Petitcolas, F., 2000. Information Hiding Techniques for steganography and Digital Watermarking. Artech House Books.
- Ker, A., 2005. Improved Detection of LSB Steganography in Grayscale Images. Lecture Notes in Computer Science, Springer-Verlag, 3200, 2005, pp.97-115.
- Liu, Q. and Sung, A., 2007. Feature Mining and NueroFuzzy Inference System for Steganalysis of LSB Matching Steganography in Grayscale Images. Proc. of 20th International Joint Conference on Artificial Intelligence, pp. 2808-2813.
- Liu Q, Sung A, Chen, Z and Xu J, 2008a. Feature Mining and Pattern Classification for Steganalysis of LSB Matching Steganography in Grayscale Images. Pattern Recognition, 41(1): 56-66.
- Liu, Q., Sung, A., Xu, J. and Ribeiro, B., 2006. Image Complexity and Feature Extraction for Steganalysis of LSB Matching Steganography., Proc. of 18th International Conference on Pattern Recognition, ICPR (1), pp. 1208-1211.
- Liu, Q., Sung, A., Ribeiro, B., Wei, M., Chen, Z. and Xu, J., 2008b. Image Complexity and Feature Mining for Steganalysis of Least Significant Bit Matching Steganography, Information Sciences, 178(1): 21-36.
- Lyu, S. and Farid, H., 2005. How Realistic is Photorealistic. IEEE Trans. on Signal Processing, 53(2): 845-850.
- Marvel, L., Boncelet, C. and Retter, C., 1999. Spread Spectrum Image Steganography. IEEE Trans. Image Processing, 8(8): 1075-1083.
- Pevny, T. and Fridrich, J., 2007. Merging Markov and DCT Features for Multi-Class JPEG Steganalysis. Proc. SPIE Electronic Imaging, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505.
- Sallee P, 2004. Model based steganography. Lecture Notes in Computer Science, vol. 2939, pp. 154-167.
- Sharifi K and Leon-Garcia A, 1995. Estimation of Shape Parameter for Generalized Gaussian Distributions in Subband Decompositions of Video. IEEE Trans. Circuits Syst. Video Technol., 5: 52-56.
- Shi, Y., Chen, C. and Chen, W., 2007. A Markov process based approach to effective attacking JPEG steganography. Lecture Notes in Computer Sciences, vol.437, pp.249-264.
- Vapnik, V., 1998. Statistical Learning Theory, John Wiley.
- Westfeld, A., 2001. High Capacity Despite Better Steganalysis (F5-A Steganographic Algorithm). Lecture Notes in Computer Science, vol. 2137, pp.289- 302.
Paper Citation
in Harvard Style
Liu Q., H. Sung A., Qiao M. and Ribeiro B. (2009). USING EXPANDED MARKOV PROCESS AND JOINT DISTRIBUTION FEATURES FOR JPEG STEGANALYSIS . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8111-66-1, pages 226-231. DOI: 10.5220/0001658402260231
in Bibtex Style
@conference{icaart09,
author={Qingzhong Liu and Andrew H. Sung and Mengyu Qiao and Bernardete M. Ribeiro},
title={USING EXPANDED MARKOV PROCESS AND JOINT DISTRIBUTION FEATURES FOR JPEG STEGANALYSIS},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2009},
pages={226-231},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001658402260231},
isbn={978-989-8111-66-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - USING EXPANDED MARKOV PROCESS AND JOINT DISTRIBUTION FEATURES FOR JPEG STEGANALYSIS
SN - 978-989-8111-66-1
AU - Liu Q.
AU - H. Sung A.
AU - Qiao M.
AU - Ribeiro B.
PY - 2009
SP - 226
EP - 231
DO - 10.5220/0001658402260231
in Harvard Style
Liu Q., H. Sung A., Qiao M. and Ribeiro B. (2009). USING EXPANDED MARKOV PROCESS AND JOINT DISTRIBUTION FEATURES FOR JPEG STEGANALYSIS.In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8111-66-1, pages 226-231. DOI: 10.5220/0001658402260231
in Bibtex Style
@conference{icaart09,
author={Qingzhong Liu and Andrew H. Sung and Mengyu Qiao and Bernardete M. Ribeiro},
title={USING EXPANDED MARKOV PROCESS AND JOINT DISTRIBUTION FEATURES FOR JPEG STEGANALYSIS},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2009},
pages={226-231},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001658402260231},
isbn={978-989-8111-66-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - USING EXPANDED MARKOV PROCESS AND JOINT DISTRIBUTION FEATURES FOR JPEG STEGANALYSIS
SN - 978-989-8111-66-1
AU - Liu Q.
AU - H. Sung A.
AU - Qiao M.
AU - Ribeiro B.
PY - 2009
SP - 226
EP - 231
DO - 10.5220/0001658402260231