A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORICAL DATA

Ning Chen, Nuno C. Marques

2009

Abstract

Learning vector quantization (LVQ) is a supervised learning algorithm for data classification. Since LVQ is based on prototype vectors, it is a neural network approach particularly applicable in non-linear separation problems. Existing LVQ algorithms are mostly focused on numerical data. This paper presents a batch type LVQ algorithm used for mixed numerical and categorical data. Experiments on various data sets demonstrate the proposed algorithm is effective to improve the capability of standard LVQ to deal with categorical data.

References

  1. Asuncion, A. and Newman, D. J. (2007). UCI machine learning repository. URL: http://www.ics.uci.edu/~mlearn/MLRepository.html.
  2. Bader, S., Holldobler, S., and Marques, N. (2008). Guiding backprop by inserting rules. In d'Avila Garcez, A. S. and Hitzler, P., editors, Proceeding of 18th European Conference on Artificial Intelligence, the 4th International Workshop on Neural-Symbolic Learning and Reasoning, volume 366 of ISSN 1613-0073, Patras, Greece.
  3. Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York.
  4. Chen, N. and Marques, N. C. (2005). An extension of selforganizing maps to categorical data. In Bento, C., Cardoso, A., and Dias, G., editors, EPIA, volume 3808 of Lecture Notes in Computer Science, pages 304-313. Springer.
  5. Geng, X., Zhan, D.-C., and Zhou, Z.-H. (2005). Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and CyberneticsCPart B: Cybernetics, 35(6):1098-1107.
  6. Huang, Z. (1998). Extensions to the k-means algorithms for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2:283-304.
  7. Kohonen, T. (1997). Self-organizing maps. Springer Verlag, Berlin, 2nd edition.
  8. Kohonen, T. (2005). Som toolbox 2.0. http://www.cis.hut.fi/projects/somtoolbox/.
  9. Kohonen, T. and Somervuo, P. (1998). Self-organizing maps of symbol strings. Neurocomputing, 21(10):19- 30.
  10. Kotsiantis, S. B. (2007). Supervised machine learning: a review of classification techniques. Informatica, 31:249-268.
  11. Marques, N., Bader, S., Rocio, V., and Holldobler, S. (2007). Neuro-symbolic word tagging. In Proceedings of 13th Portuguese Conference on Artificial Intelligence (EPIA'07), 2nd Workshop on Text Mining and Applications, Portugal. IEEE Guimaraes.
  12. Matheus, C. (1990). Adding domain knowledge to sbl through feature construction. In Proceedings of the Eighth National Conference on Artificial Intelligence, pages 803-808, Boston. MA: AAAI Press.
  13. Silva, B. and Marques, N. C. (2007). A hybrid parallel som algorithm for large maps in data-mining. In Proceedings of 13th Portuguese Conference on Artificial Intelligence (EPIA'07), Workshop on Business Intelligence, Portugal. IEEE Guimaraes.
  14. Solaiman, B., Mouchot, M. C., and Maillard, E. (1994). A hybrid algorithm (hlvq) combining unsupervised and supervised learning approaches. In Proceedings of IEEE International Conference on Neural Networks(ICNN), pages 1772-1778, Orlando, USA.
  15. Somervuo, T. and Kohonen, T. (1999). Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters, 10(2):151-159.
  16. Stephen, D. B. (1999). Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis, 3(3):191-209.
  17. Vuorimaa, P. (1994). Use of the fuzzy self-organizing map in pattern recognition. In Proceedings of the Third IEEE Conference on Computational Intelligence, pages 478-801.
  18. Witten, H. and Frank, E. (2005). Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition.
  19. Zhang, D., Chen, S., and Zhou, Z.-H. (2004). Fuzzy-kernel learning vector quantization. In Yin, F., Wang, J., and Guo, C., editors, ISNN (1), volume 3173 of Lecture Notes in Computer Science, pages 180-185. Springer.
Download


Paper Citation


in Harvard Style

Chen N. and C. Marques N. (2009). A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORICAL DATA . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8111-66-1, pages 77-84. DOI: 10.5220/0001661700770084


in Bibtex Style

@conference{icaart09,
author={Ning Chen and Nuno C. Marques},
title={A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORICAL DATA},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2009},
pages={77-84},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001661700770084},
isbn={978-989-8111-66-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORICAL DATA
SN - 978-989-8111-66-1
AU - Chen N.
AU - C. Marques N.
PY - 2009
SP - 77
EP - 84
DO - 10.5220/0001661700770084


in Harvard Style

Chen N. and C. Marques N. (2009). A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORICAL DATA.In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8111-66-1, pages 77-84. DOI: 10.5220/0001661700770084


in Bibtex Style

@conference{icaart09,
author={Ning Chen and Nuno C. Marques},
title={A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORICAL DATA},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2009},
pages={77-84},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001661700770084},
isbn={978-989-8111-66-1},
}


in EndNote Style

TY - CONF

JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - A BATCH LEARNING VECTOR QUANTIZATION ALGORITHM FOR CATEGORICAL DATA
SN - 978-989-8111-66-1
AU - Chen N.
AU - C. Marques N.
PY - 2009
SP - 77
EP - 84
DO - 10.5220/0001661700770084