GPU-BASED REAL-TIME DISCRETE EUCLIDEAN DISTANCE TRANSFORMS WITH PRECISE ERROR BOUNDS

Jens Schneider, Martin Kraus, Rüdiger Westermann

2009

Abstract

We present a discrete distance transform in style of the vector propagation algorithm by Danielsson. Like other vector propagation algorithms, the proposed method is close to exact, i.e., the error can be strictly bounded from above and is significantly smaller than one pixel. Our contribution is that the algorithm runs entirely on consumer class graphics hardware, thereby achieving a throughput of up to 96 Mpixels/s. This allows the proposed method to be used in a wide range of applications that rely both on high speed and high quality.

References

  1. Aurenhammer, F. (1991). Voronoi diagrams-a fundamental geometric data structure. ACM Computing Surveys, 23(3):345-405.
  2. Butt, M. and Maragos, P. (1998). Optimum design of chamfer distance transforms. IEEE Trans. Image Processing, 7(10):1477-1484.
  3. Cuisenaire, O. (1999). Distance Transformation: Fast Algorithms and Applications to Medical Image Processing. Phd. thesis, Univ. Catholique de Louvain.
  4. Cuntz, N. and Kolb, A. (2007). Fast hierarchical 3D distance transformations on the GPU. In Proceedings Eurographics Short Papers, pages 93-96.
  5. Danielsson, P. (1980). Euclidean distance mapping. Computer Graphics and Image Processing, 14:227-248.
  6. Denny, M. (2003). Algorithmic Geometry via Graphics Hardware. Phd. thesis, Universität des Saarlandes, Saarbrücken, Germany.
  7. Fortune, S. (1986). A sweepline algorithm for Voronoi diagrams. In ACM Symp. Computational Geometry, pages 313-322.
  8. Helmsen, J., Puckett, E., Colella, P., and Dorr, M. (1996). Two new methods for simulating photolithography development in 3D. In SPIE 2726, pages 253-261.
  9. Hoff, K., T. Culver, J. K., Lin, M., and Manocha, D. (1999). Fast computation of generalized Voronoi diagrams using graphics hardware. ACM Trans. on Graphics, 18(3):277-286.
  10. Jones, M., Baerentzen, J., and Sramek, M. (2006). 3D distance fields: a survey of techniques and applications. IEEE Trans. Visualization and Computer Graphics, 12(4):581-599.
  11. Kulpa, Z. and Kruse, B. (1979). Methods of effective implementation of circular propagation in discrete images. Internal Report LiTH-ISY-I-0274, Dept. of Electrical Engineering, Linköping Univ., Sweden.
  12. Mauch, S. (2003). Efficient algorithms for solving static Hamilton-Jacobi equations. PhD thesis, California Institute of Technology, Pasadena, CA.
  13. Maurer, C., Qi, R., and Raghavan, V. (2003). A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(2):265-270.
  14. Mullikin, J. (1992). The vector distance transform in two and three dimensions. CVGIP: Graphical Models and Image Processing, 54(6):526-535.
  15. Okabe, A., Boots, B., Sugihara, K., and Chiu, S. (1999). Spatial Tesselations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons Ltd.
  16. Olsen, J. (2004). Realtime procedural terrain generation. http://oddlabs.com/download/terrain generation.pdf.
  17. Rong, G. and Tan, T.-S. (2006). Jump flooding in gpu with applications to Voronoi diagram and distance transform. In ACM Symp. Interactive 3D Graphics and Games, pages 109-116.
  18. Rosenfeld, A. and Pfalz, J. (1966). Sequential operations in digital picture processing. Journal of ACM, 13(4):471-494.
  19. Satherly, R. and Jones, M. (2001). Vector-city vector distance transform. Computer Vision and Image Understanding, 82(3):238-254.
  20. Sethian, J. (1996). A fast marching level set method for monotonically advancing fronts. Nat'l Academy of Sciences US-Paper Ed., 93(4):1591-1595.
  21. Sigg, C., Peikert, R., and Gross., M. (2003). Signed distance transform using graphics hardware. In IEEE Visualization, pages 83-90.
  22. Strzodka, R. and Telea, A. (2004). Generalized distance transforms and skeletons in graphics hardware. In Joint EG/IEEE TVCG Symp. Visualization, pages 221-230.
  23. Sud, A., Otaduy, M., and Manocha, D. (2004). DiFi: Fast 3D distance field computation using graphics hardware. EG Computer Graphics Forum, 23(3):557-566.
  24. Svensson, S. and Borgefors, G. (2002). Digital distance transforms in 3D images using information from neighborhoods up to 5 × 5 × 5. Computer Vision and Image Understanding, 88:24-53.
  25. Telea, A. and van Wijk., J. (2002). An augmented fast marching method for computing skeletons and centerlines. In Symp. on Visualization, pages 251-260.
  26. Tsitsiklis., N. (1995). Efficient algorithms for globally optimal trajectories. IEEE Trans. Automatic Control, 40(9):1528-1538.
  27. Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxiéme mémoire: recherches sur les paralléloèdres primitifs. Reine Angewandte Mathematik, 134:198- 287.
Download


Paper Citation


in Harvard Style

Schneider J., Kraus M. and Westermann R. (2009). GPU-BASED REAL-TIME DISCRETE EUCLIDEAN DISTANCE TRANSFORMS WITH PRECISE ERROR BOUNDS . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 435-442. DOI: 10.5220/0001754604350442


in Bibtex Style

@conference{visapp09,
author={Jens Schneider and Martin Kraus and Rüdiger Westermann},
title={GPU-BASED REAL-TIME DISCRETE EUCLIDEAN DISTANCE TRANSFORMS WITH PRECISE ERROR BOUNDS},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={435-442},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001754604350442},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)
TI - GPU-BASED REAL-TIME DISCRETE EUCLIDEAN DISTANCE TRANSFORMS WITH PRECISE ERROR BOUNDS
SN - 978-989-8111-69-2
AU - Schneider J.
AU - Kraus M.
AU - Westermann R.
PY - 2009
SP - 435
EP - 442
DO - 10.5220/0001754604350442