A SOLID TEXTURE DATABASE FOR SEGMENTATION AND CLASSIFICATION EXPERIMENTS

Ludovic Paulhac, Pascal Makris, Jean-Yves Ramel

2009

Abstract

This paper describes the methods of construction and the main characteristics of a solid texture database freely available for texture classification experiment. Here the purpose is to propose a solid texture database with many classes of different solid textures to allow an evaluation of properties and performance of analysis methods. Each images is described by a xml file made according to a DTD which is available in our web site. Using this formalism, it is even possible for a researcher to propose his own images or creation methods to complete this solid texture database. At last we discuss about different ways to exploit the database by reviewing some evaluation methods used to evaluate performance of classification and segmentation algorithms.

References

  1. Brodatz, P. (1966). Textures: A Photographic Album for Artists and Designer. Dover Pub.
  2. Chabrier, S., Laurent, H., Rosenberger, C., and Emile, B. (2008). Comparative study of contour detection evaluation criteria based on dissimilarity measures. EURASIP Journal on Image and Video Processing, 2008:13 pages.
  3. Chellappa, R. and Jain, A. K. (1993). Markov Random Fields Theory and Application. Academic Press.
  4. Cuba, O. and Dana, K. (2004). 3d texture recognition using bidirectional feature histograms. International journal of Computer Vision, 59(1):33-60.
  5. Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27:861-874.
  6. Ferri, C., Orallo, J. H., and Modroiu, R. (2008). An experimental comparison of performance measures for classification. Pattern Recognition Letters.
  7. Gool, L. J. V., Dewaele, P., and Oosterlinck, A. (1985). Texture analysis anno 1983. Computer Vision, Graphics, and Image Processing, 29(3):336-357.
  8. Haralick, R. M. (1979). Statistical and structural approaches to textures. Proceedings of the IEEE, 67(5):786-804.
  9. Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 3(6):610- 621.
  10. Jafari-Khouzani, K., Soltanian-Zadeh, H., Elisevich, K., and Patel, S. (2004). Comparison of 2d and 3d wavelet features for tle lateralization. In Proceedings of the SPIE, volume 5369.
  11. Julesz, B. (1962). Visual pattern recognition. IEEE Transaction on Information Theroy, 8.
  12. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. (2007). Solid texture synthesis from 2d exemplars. In SIGGRAPH 7807: Proceedings of the 34th International Conference and Exhibition on Computer Graphics and Interactive Techniques.
  13. Lewis, J.-P. (1984). Texture synthesis for digital painting. SIGGRAPH Computer Graphics, 18(3):245-252.
  14. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE transaction on Pattern Analysis and Machine Intelligence, 11:674-693.
  15. Martin, A., Laanaya, H., and Arnold-Bos, A. (2006). Evaluation for uncertain image classification and segmentation. Pattern Recogn., 39(11):1987-1995.
  16. Mosquera, A., Cabello, D., Carreira, M., and Penedo, M. (1992). A fractal-based approach to texture segmentation. In ICIPA 7892: Proceedings on the International Conference on Image Processing and its Application.
  17. Neyret, F. (1995). A general and multiscale model for volumetric textures. In Davis, W. A. and Prusinkiewicz, P., editors, Graphics Interface 7895, pages 83-91. Canadian Information Processing Society, Canadian Human-Computer Communications Society. ISBN 0- 9695338-4-5.
  18. Ojala, T., Pietikainen, M., and Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29(1):51-59.
  19. Showalter, C., Clymer, B. D., Richmond, B., and Powell, K. (2006). Three-dimensional texture analysis of cancellous bone cores evaluated at clinical ct resolutions. Osteoporos International, 17:259-266.
  20. Suzuki, M. T., Yoshitomo, Y., Osawa, N., and Sugimoto, Y. (2004). Classification of solid textures using 3d mask patterns. In ICSMC 7804: International Conference on Systems, Man and Cybernetics.
  21. Tuceryan, M. and Jain, A. K. (1990). Texture segmentation using voronoi polygons. IEEE Transactions On Pattern Analysis And Machine Intelligence, 12:211-216.
  22. Tuceryan, M. and Jain, A. K. (1998). Texture Analysis, chapter 2.1, pages 207-248. The Handbook of Pattern Recognition and Computer Vision.
  23. Zhang, H., Fritts, J. E., and Goldman, S. A. (2008). Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding, 110:260-280.
  24. Zhang, Y. (1996). A survey on evaluation methods for image segmentation. Pattern Recognition, 29(8):1335- 1346.
Download


Paper Citation


in Harvard Style

Paulhac L., Makris P. and Ramel J. (2009). A SOLID TEXTURE DATABASE FOR SEGMENTATION AND CLASSIFICATION EXPERIMENTS . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 135-141. DOI: 10.5220/0001768401350141


in Bibtex Style

@conference{visapp09,
author={Ludovic Paulhac and Pascal Makris and Jean-Yves Ramel},
title={A SOLID TEXTURE DATABASE FOR SEGMENTATION AND CLASSIFICATION EXPERIMENTS},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={135-141},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001768401350141},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - A SOLID TEXTURE DATABASE FOR SEGMENTATION AND CLASSIFICATION EXPERIMENTS
SN - 978-989-8111-69-2
AU - Paulhac L.
AU - Makris P.
AU - Ramel J.
PY - 2009
SP - 135
EP - 141
DO - 10.5220/0001768401350141