REAL-TIME DENSE DISPARITY ESTIMATION USING CUDA’S API

Mourad Boufarguine, Malek Baklouti, Vincent Guitteny, Serge Couvet

2009

Abstract

In this paper, we present a real-time dense disparity map estimation based on beliefs propagation inference algorithm. While being real-time, our implementation generates high quality disparity maps. Despite the high complexity of the calculations beliefs propagation involves, our implementation on graphics processor using CUDA API makes more than 100 times speedup compared to CPU implementation. We tested our experimental results in the Middlebury benchmark and obtained good results among the real-time algorithms. We use several programming techniques to reduce the number of iterations to convergence and memory usage in order to maintain real-time performance.

References

  1. Borgefors, G. (1986). Distance transformations in digital images. Comput. Vision Graph. Image Process., 34(3):344-371.
  2. Felzenszwalb, P. F. and Huttenlocher, D. P. (2006). Efficient belief propagation for early vision. Int. J. Comput. Vision, 70(1):41-54.
  3. Kanade, T. and Okutomi, M. (1994). A stereo matching algorithm with an adaptive window. IEEE Trans. Pattern Anal. Mach. Intell., 16(9):920-932.
  4. Kim, J. C., Lee, K. M., Choi, B. T., and Lee, S. U. (2005). A dense stereo matching using two-pass dynamic programming with generalized ground control points. In CVPR05, pages 1075-1082.
  5. Klaus, A., Sormann, M., and Karner, K. (2006). Segmentbased stereo matching using belief propagation and a self-adapting dissimilarity measure. In ICPR06, pages 15-18.
  6. Roy, S. and Cox, I. J. (1998). A maximum-flow formulation of the n-camera stereo correspondence problem. In ICCV98, page 492.
  7. Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1-3):7-42.
  8. Sun, J., Shum, H., and Zheng, N. (2003). Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell., 25(7):787-800.
  9. Veksler, O. (2002). Stereo correspondence with compact windows via minimum ratio cycle. IEEE Trans. Pattern Anal. Mach. Intell., 24(12):1654-1660.
  10. Wang, L., Liao, M., Gong, M., Yang, R., and Nister, D. (2006). High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In 3DPVT06, pages 798-805.
  11. Yang, Q., Wang, L., and Yang, R. (2006). Real-time global stereo matching using hierarchical belief propagation. In BMVC06, page III:989.
  12. Yoon, K.-J. and Kweon, I.-S. (2005). Locally adaptive support-weight approach for visual correspondence search. In CVPR05, pages 924-931.
Download


Paper Citation


in Harvard Style

Boufarguine M., Baklouti M., Guitteny V. and Couvet S. (2009). REAL-TIME DENSE DISPARITY ESTIMATION USING CUDA’S API . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 417-422. DOI: 10.5220/0001773204170422


in Bibtex Style

@conference{visapp09,
author={Mourad Boufarguine and Malek Baklouti and Vincent Guitteny and Serge Couvet},
title={REAL-TIME DENSE DISPARITY ESTIMATION USING CUDA’S API},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={417-422},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001773204170422},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - REAL-TIME DENSE DISPARITY ESTIMATION USING CUDA’S API
SN - 978-989-8111-69-2
AU - Boufarguine M.
AU - Baklouti M.
AU - Guitteny V.
AU - Couvet S.
PY - 2009
SP - 417
EP - 422
DO - 10.5220/0001773204170422