A REVIEW ON THE CURRENT SEGMENTATION ALGORITHMS FOR MEDICAL IMAGES

Zhen Ma, João Manuel R. S. Tavares, R. M. Natal Jorge

2009

Abstract

This paper makes a review on the current segmentation algorithms used for medical images. Algorithms are divided into three categories according to their main ideas: the ones based on threshold, the ones based on pattern recognition techniques and the ones based on deformable models. The main tendency of each category with their principle ideas, application field, advantages and disadvantages are discussed. For each considered type some typical algorithms are described. Algorithms of the third category are mainly focused because of the intensive investigation on deformable models in the recent years. Possible applications of these algorithms on segmenting organs and tissues contained in the pelvic cavity are also discussed through several preliminary experiments.

References

  1. Adams, R., Bischof L., 1994. Seeded Region Growing. IEEE Trans. on Pattern Anal Mach. Intelligence, 16:641-47.
  2. Akselrod-Ballin, A, Galun, M, et al, 2006. Atlas Guided Identification of Brain Structures by Combining 3D Segmentation and SVM Classification. Int. Conf Med Image Comput Comput Assist Interv., 209-16.
  3. Alirezaie, J., Jernigan, M. E., Nahmias, C., 1997. Neural Network-Based Segmentation of Magnetic Resonance Images of the Brain, IEEE Trans. on Nuclear Science, 44:194-8.
  4. Bezdek, J. C., Hall, L. O., Clarke, L. P., 1993. Review of MR Image Segmentation Techniques Using Pattern Recognition, Med. Phys., 20:1033-48.
  5. Canny, J., 1986. A Computational Approach to Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714.
  6. Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic Active Contours. Int. J. of Comp. Vision, 22:61-79.
  7. Chan, T., Vese, L. A., 1999. An Active Contour Without Edge. Int. Conf. Scale-Space Theories in Computer Vision, 141-151.
  8. Cheng, K. S., Lin, J. S., Mao, C. W., 1996. The Application of Competitive Hopfield Neural Network to Medical Image Segmentation. IEEE Trans. on Med. Img., 15:560-7.
  9. Cohen, L. D., 1991. On Active Contour Models and Balloons. CVGIP: Image Understanding, 53:211-8.
  10. Cootes, T. F., Edwards, G. J., Taylor, C. J., 2001. Active Appearance Models. IEEE Trans. Pattern Analysis and Machine Intelligence, 23: 681-85.
  11. Davis, L. S., 1975. A Survey of Edge Detection Techniques. Comp. Graphics and Image Processing, 4:248-70.
  12. Flitti, F., Collet, C., Joannic-Chardin, A., 2005. Unsupervised Multiband Image Segmentation Using Hidden Markov Quadtree and Copulas. IEEE Int. Conf. on Image Processing, 2:634-37.
  13. Gindi, G., Rangarajan, A., Zubal, G., 1993. Atlas-Guided Segmentation of Brain Images via Optimizing Neural Networks. Proc. SPIE Biomedical Image Processing IV, 1905-58.
  14. Kass, M., Witkin, A., Terzopoulos, D., 1987. Snakes: Active contour models. Int. J. of Comp. Vision, 1:321- 31.
  15. Malladi, R., Sethian, J. A., Vemuri, B., 1993. A Topology Independent Shape Modeling Scheme. SPIE Conf. on Geometric Methods in Computer Vision II, 2031:246- 58.
  16. McInerney, T., Terzopoulos, D., 1995. A Dynamic Finite Element Surface Model for Segmentation and Tracking in Multidimensional Medical Images with Application to Cardiac 4D Image Analysis. Computerized Medical Imaging and Graphics, 19:69- 83.
  17. Mohamed, N. A., Ahmed, M. N., Farag A., 1998. Modified Fuzzy C-mean in Medical Image Segmentation. Proceedings of the 20th Annual International Conference of the IEEE, 3:1377-80.
  18. Ng, H. P., Ong, S. H., et al, 2006. Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm. IEEE Southeast Symposium on Image Analysis and Interpretation, 61- 5.
  19. Osher, S., Sethian, J., 1988. Fronts Propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys., 79: 12- 49.
  20. Paragios, N., 2002. A Variational Approach for the Segmentation of the Left Ventricle in Cardiac Image Analysis, International Journal of Computer Vision, 50:345-62.
  21. Pohle, R., Toennies, K. D., 2001. Segmentation of Medical Images Using Adaptive Region Growing, SPIE, 1337-46.
  22. Wang, S., Zhu, W. Y., Liang, Z. P., 2001. Shape Deformation: SVM Regression and Application to Medical Image Segmentation, Eighth International Conference on Computer Vision, 2:209-16.
  23. Wong, K. P., Feng, D., et al, 2002. Segmentation of Dynamic PET Images Using Cluster Analysis. IEEE Trans. on Nuclear Science, 40:200-07.
  24. Xu, C. Y., Prince, J. L., 1998. Snakes, Shapes, and Gradient Vector Flow. IEEE Trans. on Image Processing, 7:359-69.
  25. Zaidi, H., 2005. Quantitative Analysis in Nuclear Medicine Imaging, Springer.
Download


Paper Citation


in Harvard Style

Ma Z., R. S. Tavares J. and Natal Jorge R. (2009). A REVIEW ON THE CURRENT SEGMENTATION ALGORITHMS FOR MEDICAL IMAGES . In Proceedings of the First International Conference on Computer Imaging Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2009) ISBN 978-989-8111-68-5, pages 135-140. DOI: 10.5220/0001793501350140


in Bibtex Style

@conference{imagapp09,
author={Zhen Ma and João Manuel R. S. Tavares and R. M. Natal Jorge},
title={A REVIEW ON THE CURRENT SEGMENTATION ALGORITHMS FOR MEDICAL IMAGES},
booktitle={Proceedings of the First International Conference on Computer Imaging Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2009)},
year={2009},
pages={135-140},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001793501350140},
isbn={978-989-8111-68-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Imaging Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2009)
TI - A REVIEW ON THE CURRENT SEGMENTATION ALGORITHMS FOR MEDICAL IMAGES
SN - 978-989-8111-68-5
AU - Ma Z.
AU - R. S. Tavares J.
AU - Natal Jorge R.
PY - 2009
SP - 135
EP - 140
DO - 10.5220/0001793501350140