PARALLEL IMPLEMENTATION OF A GLOBAL LINE MONTE CARLO RADIOSITY

Roel Martínez, Adrià Forés, Ignacio Martín

2009

Abstract

Radiosity methods are known by their expensive computational cost. To compute high quality images with a lot of polygons or patches may take hours. For this reason parallel processing will be a good option in order to decrease the computational cost. On the other hand, Monte Carlo methods offer good alternatives for parallelization, given their intrinsic decomposition properties in independent subtasks. We have implemented our multipath method for radiosity using a cluster of PCs. Results are presented for 1 to 8 processors, exhibiting a good efficiency and scalability.

References

  1. Alme, H., Rodrigue, G., and Zimmerman, G. (1998). Domain decomposition methods for parallel laser-tissue models with monte carlo transport. In Niederreiter, H. and Spanier, J., editors, Proceedings of the Third International Conference on Monte Carlo and QuasiMonte Carlo methods in Scientific Computing, Claremont, California, USA. Springer-Verlag.
  2. Bekaert, P. (1999). Hierarchical and Stochastic Algorithms for Radiosity. PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium.
  3. Besuievsky, G. and Pueyo, X. (1997). Making Global Monte Carlo Methods Useful: An Adaptive Approach for Radiosity. In Actas VII Congreso Espan˜ol de Informática Gráfica (CEIG 7897), Barcelona, Spain.
  4. Buckalew, C. and Fussell, D. (1989). Illumination Networks: Fast Realistic Rendering with General Reflectance Functions. In Computer Graphics (ACM SIGGRAPH 7889 Proceedings), volume 23, pages 89- 98.
  5. Castro, F., Martínez, R., and Sbert, M. (1998). Quasimonte carlo and extended first-shot improvement to the multi-path method. In Szirmay-Kalos, L., editor, Proc. Spring Conference on Computer Graphics 7898, pages 91-102, Budimerce, Slovakia. Comenius University. Available from http: //www.dcs.fmph.uniba.sk /˜sccg/ proceedings/ 1998.index.htm.
  6. Martin, I., Perez, F., and Pueyo, X. (1998). The SIR Rendering Architecture. Computers & Graphics, 22(5):601- 609.
  7. Martínez, R. (2004). Adaptive and Depth Buffer Solutions with Bundle of Parallel Rays for Global Line Monte Carlo Radiosity. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain. Available from http://ima.udg.es/˜roel.
  8. Reinhard, E., Chalmers, A. G., and Jansen, F. W. (1998). Eurographics 7898 State of the Art Reports, chapter Overview of Parallel PhotoRealistic Graphics, pages 1-25. Available from http: // www.cs.bris.ac.uk /Tools /Reports /Authors / alan.html.
  9. Santaló , L. A. (1976). Integral Geometry and Geometric Probability. Addison-Wesley, New York.
  10. Sbert, M. (1997). The Use of Global Random Directions to Compute Radiosity: Global Monte Carlo Techniques. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain. Available from http://ima.udg.es/˜mateu.
  11. Sbert, M., Perez, F., and Pueyo, X. (1995). Global Monte Carlo: A Progressive Solution. In Hanrahan, P. M. and Purgathofer, W., editors, Rendering Techniques 7895 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages 231-239, New York, NY. SpringerVerlag.
  12. Sbert, M., Pueyo, X., Neumann, L., and Purgathofer, W. (1996). Global Multipath Monte Carlo Algorithms for Radiosity. The Visual Computer, 12(2):47-61.
  13. Szirmay-Kalos, L. (1999). Stochastic Iteration for NonDiffuse Global Illumination. In Computer Graphics Forum ( Proceedings Eurographics 7899), volume 18, pages C-233-C-244.
  14. Szirmay-Kalos, L. and Purgathofer, W. (1998). Global RayBundle Tracing with Hardware Acceleration. In Drettakis, G. and Max, N., editors, Rendering Techniques 7898 (Proceedings of Eurographics Rendering Workshop 7898), pages 247-258, New York, NY. Springer Wien.
  15. Szirmay-Kalos, L., Sbert, M., Martínez, R., and Tobler, R. F. (2000). Incoming First-Shot for Non-Diffuse Global Illumination. In Spring Conference on Computer Graphics, Budmerice, Slovakia. Available from http://www.fsz.bme.hu/˜szirmay/puba.htm.
  16. Zareski, D., Wade, B., Hubbard, P., and Shirley, P. (1995). Efficient parallel global illumination using density estimation. In Proceedings of Visualization 7895 - Parallel Rendering Symposium, pages 219-230.
Download


Paper Citation


in Harvard Style

Martínez R., Forés A. and Martín I. (2009). PARALLEL IMPLEMENTATION OF A GLOBAL LINE MONTE CARLO RADIOSITY . In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009) ISBN 978-989-8111-67-8, pages 164-169. DOI: 10.5220/0001801501640169


in Bibtex Style

@conference{grapp09,
author={Roel Martínez and Adrià Forés and Ignacio Martín},
title={PARALLEL IMPLEMENTATION OF A GLOBAL LINE MONTE CARLO RADIOSITY},
booktitle={Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)},
year={2009},
pages={164-169},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001801501640169},
isbn={978-989-8111-67-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)
TI - PARALLEL IMPLEMENTATION OF A GLOBAL LINE MONTE CARLO RADIOSITY
SN - 978-989-8111-67-8
AU - Martínez R.
AU - Forés A.
AU - Martín I.
PY - 2009
SP - 164
EP - 169
DO - 10.5220/0001801501640169