SCORING OF BREAST TISSUE MICROARRAY SPOTS THROUGH ORDINAL REGRESSION
Telmo Amaral, Stephen McKenna, Katherine Robertson, Alastair Thompson
2009
Abstract
Breast tissue microarrays (TMAs) facilitate the study of very large numbers of breast tumours in a single histological section, but their scoring by pathologists is time consuming, typically highly quantised, and not without error. This paper compares the results of different classification and ordinal regression algorithms trained to predict the scores of immunostained breast TMA spots, based on spot features obtained in previous work by the authors. Despite certain theoretical advantages, Gaussian process ordinal regression failed to achieve any clear performance gain over classification using a multi-layer perceptron. The use of the entropy of the posterior probability distribution over class labels for avoiding uncertain decisions is demonstrated.
References
- Adjuvant Breast Cancer Trials Collaborative Group (2007). Polychemotherapy for early breast cancer: Results from the international adjuvant breast cancer chemotherapy randomized trial. Journal of the National Cancer Institute, 99(7):506-515.
- Amaral, T., McKenna, S., Robertson, K., and Thompson, A. (2008). Classification of breast-tissue microarray spots using colour and local invariants. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 999-1002, Paris, France. IEEE.
- Axelrod, D., Miller, N., Lickley, H., Qian, J., ChristensBarry, W., Yuan, Y., Fu, Y., and Chapman, J. (2008). Effect of Quantitative Nuclear Image Features on Recurrence of Ductal Carcinoma In Situ (DCIS) of the Breast. Cancer Informatics, 4:99-109.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
- Camp, R., Charette, L., and Rimm, D. (2000). Validation of tissue microarray technology in breast carcinoma. Laboratory Investigation, 80(12):1943-1949.
- Chapman, J., Miller, N., Lickley, H., Qian, J., ChristensBarry, W., Fu, Y., Yuan, Y., and Axelrod, D. (2007). Ductal carcinoma in situ of the breast (DCIS) with heterogeneity of nuclear grade: prognostic effects of quantitative nuclear assessment. BMC Cancer, 7:174.
- Chu, W. and Ghahramani, Z. (2005). Gaussian processes for ordinal regression. Journal of Machine Learning Research, 6:1019-1041.
- Dalle, J., Leow, W., Racoceanu, D., Tutac, A., and Putti, T. (2008). Automatic Breast Cancer Grading of Histopathological Images. In International Conference of the IEEE Engineering in Medicine and Biology Society, pages 3052-3055.
- Detre, S., Saccani Jotti, G., and Dowsett, M. (1995). A ”quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. Journal of Clinical Pathology, 48(9):876-878.
- Doyle, S., Agner, S., Madabhushi, A., Feldman, M., and Tomaszewski, J. (2008). Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 496-499. IEEE.
- Kononen, J., Bubendorf, L., Kallionimeni, A., Brlund, M., Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M., Sauter, G., and Kallionimeni, O. (1998). Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Medicine, 4(7):844-847.
- Kostopoulos, S., Cavouras, D., Daskalakis, A., Bougioukos, P., Georgiadis, P., Kagadis, G., Kalatzis, I., Ravazoula, P., and Nikiforidis, G. (2007). Colour-Texture based image analysis method for assessing the Hormone Receptors status in Breast tissue sections. In International Conference of the IEEE Engineering in Medicine and Biology Society, pages 4985-4988. IEEE.
- Nabney, I. (2002). NETLAB: algorithms for pattern recognition. Springer-Verlag, New York.
- Petushi, S., Garcia, F., Haber, M., Katsinis, C., and Tozeren, A. (2006). Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Medical Imaging, 6:14.
- Zhang, J., Petushi, S., Regli, W., Garcia, F., and Breen, D. (2008). A study of shape distributions for estimating histologic grade. In International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1200-1205.
Paper Citation
in Harvard Style
Amaral T., McKenna S., Robertson K. and Thompson A. (2009). SCORING OF BREAST TISSUE MICROARRAY SPOTS THROUGH ORDINAL REGRESSION . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 243-248. DOI: 10.5220/0001808202430248
in Bibtex Style
@conference{visapp09,
author={Telmo Amaral and Stephen McKenna and Katherine Robertson and Alastair Thompson},
title={SCORING OF BREAST TISSUE MICROARRAY SPOTS THROUGH ORDINAL REGRESSION},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={243-248},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001808202430248},
isbn={978-989-8111-69-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - SCORING OF BREAST TISSUE MICROARRAY SPOTS THROUGH ORDINAL REGRESSION
SN - 978-989-8111-69-2
AU - Amaral T.
AU - McKenna S.
AU - Robertson K.
AU - Thompson A.
PY - 2009
SP - 243
EP - 248
DO - 10.5220/0001808202430248