APPLYING INFORMATION RETRIEVAL FOR MARKET BASKET RECOMMENDER SYSTEMS
Tapio Pitkaranta
2009
Abstract
Coded data sets form the basis for many well known applications from healthcare prospective payment system to recommender systems in online shopping. Previous studies on coded data sets have introduced methods for the analysis of rather small data sets. This study proposes applying information retrieval methods for enabling high performance analysis of data masses that scale beyond traditional approaches. An essential component in today’s data warehouses to which coded data sets are collected is a database management system (DBMS). This study presents experimental results how information retrieval indexes scale and outperform common database schemas with a leading commercial DBMS engine in analysis of coded data sets. The results show that flexible analysis of hundreds of millions of coded data sets is possible with a regular desktop hardware.
References
- Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In VLDB 7894: Proceedings of the 20th International Conference on Very Large Data Bases, pages 487-499, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
- Brijs, T., Goethals, B., Swinnen, G., Vanhoof, K., and Wets, G. (2000). A data mining framework for optimal product selection in retail supermarket data: the generalized profset model. In KDD 7800: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 300- 304, New York, NY, USA. ACM.
- Gang, Q., Sural, S., Gu, Y., and Pramanik, S. (2004). Similarity between euclidean and cosine angle distance for nearest neighbor queries. In Proceedings of the 2004 ACM symposium on Applied computing, pages 1232-1237. Michigan State University, ACM. ISBN: 1-58113-812-1.
- Grabs, T., Bö hm, K., and Schek, H.-J. (2001). Powerdbir: information retrieval on top of a database cluster. In CIKM 7801: Proceedings of the tenth international conference on Information and knowledge management, pages 411-418, New York, NY, USA. ACM.
- Harizopoulos, S., Liang, V., Abadi, D. J., and Madden, S. (2006). Performance tradeoffs in read-optimized databases. In VLDB 7806: Proceedings of the 32nd international conference on Very large data bases, pages 487-498. VLDB Endowment.
- Haykin, S. (1999). Neural Networks - A Comprehensive Foundation. Prentice Hall. ISBN: 0-13-273350-1.
- Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5-53.
- Nanopoulos, A. and Manolopoulos, Y. (2002). Efficient similarity search for market basket data. The VLDB Journal, 11(2):138-152.
- Roelleke, T., Wu, H., Wang, J., and Azzam, H. (2008). Modelling retrieval models in a probabilistic relational algebra with a new operator: the relational Bayes. VLDB Journal: Very Large Data Bases, 17(1):5-37.
- Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O'Neil, E., O'Neil, P., Rasin, A., Tran, N., and Zdonik, S. (2005). C-Store: a column-oriented dbms. In VLDB 7805: Proceedings of the 31st international conference on Very large data bases, pages 553-564. VLDB Endowment.
- WHO (2004). International Statistical Classification of Diseases and Related Health Problems, Instruction manual, volume 2. World Health Organization. ISBN: 92 4 154649 8.
- Wilkinson, R. and Hingston, P. (1991). Using the cosine measure in a neural network for document retrieval. ACM, pages 202-210.
- Zobel, J. and Moffat, A. (2006). Inverted files for text search engines. ACM Comput. Surv., 38(2):6.
Paper Citation
in Harvard Style
Pitkaranta T. (2009). APPLYING INFORMATION RETRIEVAL FOR MARKET BASKET RECOMMENDER SYSTEMS . In Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8111-84-5, pages 138-143. DOI: 10.5220/0001991101380143
in Bibtex Style
@conference{iceis09,
author={Tapio Pitkaranta},
title={APPLYING INFORMATION RETRIEVAL FOR MARKET BASKET RECOMMENDER SYSTEMS},
booktitle={Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2009},
pages={138-143},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001991101380143},
isbn={978-989-8111-84-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - APPLYING INFORMATION RETRIEVAL FOR MARKET BASKET RECOMMENDER SYSTEMS
SN - 978-989-8111-84-5
AU - Pitkaranta T.
PY - 2009
SP - 138
EP - 143
DO - 10.5220/0001991101380143