ITERATIVE FEEDBACK TUNING APPROACH TO A CLASS OF STATE FEEDBACK-CONTROLLED SERVO SYSTEMS

Mircea-Bogdan Rădac, Radu-Emil Precup, Emil M. Petriu, Stefan Preitl, Claudia-Adina Dragoş

2009

Abstract

An original control structure dedicated to a class of second-order state feedback control systems is presented in the paper. The controlled processes are accepted to be characterized by second-order servo systems with integral component. Optimal state feedback control systems are designed for those processes making use of the Iterative Feedback Tuning (IFT) approach. The state feedback control system structure is extended with an integral component to ensure the rejection of constant disturbances. A case study concerning the position control of a DC servo system with backlash is included. Real-time experimental results validate the theoretical part of the IFT approach.

References

  1. Andrade-Cetto, J., Thomas, F., 2008. A wire-based active tracker. IEEE Transactions on Robotics. 24, 642-651.
  2. Åström, K. J., Hägglund, T., 2000. Benchmark systems for PID control. In Preprints of IFAC PID'00 Workshop. Terrassa, Spain, 181-182.
  3. Barut, M., Bogosyan, S., Gokasan, M., 2008. Experimental evaluation of braided EKF for sensorless control of induction motors. IEEE Transactions on Industrial Electronics. 55, 620-632.
  4. Costas-Perez, L., Lago, D., Farina, J., Rodriguez-Andina, J. J., 2008. Optimization of an industrial sensor and data acquisition laboratory through time sharing and remote access. IEEE Transactions on Industrial Electronics. 55, 2397-2404.
  5. Cottenceau, B., Hardouin, L., Boimond, J.-L., Ferrier, J.- L., 2001. Model reference control for timed event graphs in dioids. Automatica. 37, 1451-1458.
  6. Denève, A., Moughamir, S., Afilal, L., Zaytoon, J., 2008. Control system design of a 3-DOF upper limbs rehabilitation robot. Computer Methods and Programs in Biomedicine. 89, 202-214.
  7. De Santis, A., Siciliano, B., Villani, L., 2008. A unified fuzzy logic approach to trajectory planning and inverse kinematics for a fire fighting robot operating in tunnels. Intelligent Service Robotics. 1, 41-49.
  8. Dolgui A., Guschinsky, N., Levin, G., 2009. Graph approach for optimal design of transfer machine with rotary table. International Journal of Production Research. 47, 321-341.
  9. Giua, A., Seatzu, C., 2008. Modeling and supervisory control of railway networks using Petri nets. IEEE Transactions on Automation Science and Engineering. 6, 431-445.
  10. Gomes, L., Costa, A., Barros, J. P., Lima, P., 2007. From Petri net models to VHDL implementation of digital controllers. In Proceedings of 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON 2007). Taipei, Taiwan, 94-99.
  11. Hjalmarsson, H., 1999. Efficient tuning of linear multivariable controllers using Iterative Feedback Tuning. International Journal of Adaptive Control and Signal Processing. 13, 553-572.
  12. Hjalmarsson, H., Birkeland, T., 1998. Iterative Feedback Tuning of linear time-invariant MIMO systems. In Proceedings of 37th IEEE Conference on Decision and Control. Tampa, FL, 3893-3898.
  13. Hjalmarsson, H., Gevers, M., Gunnarsson, S., Lequin, O., 1998. Iterative Feedback Tuning: theory and applications. IEEE Control Systems Magazine. 18, 26- 41.
  14. Hjalmarsson, H., Gunnarsson, S., Gevers, M., 1994. A convergent iterative restricted complexity control design scheme. In Proceedings of 33rd IEEE Conference on Decision and Control. Lake Buena Vista, FL, 1735-1740.
  15. Horváth, L., Rudas, I. J., 2004. Modeling and Problem Solving Methods for Engineers. Burlington, MA: Academic Press, Elsevier.
  16. Isermann, R., 2003. Mechatronic Systems: Fundamentals. Berlin, Heidelberg, New York: Springer-Verlag.
  17. Jansson, H., Hjalmarsson, H., 2004. Gradient approximations in Iterative Feedback Tuning for multivariable processes. International Journal of Adaptive Control and Signal Processing. 18, 665-681.
  18. Johanyák, Z. C., Kovács, S., 2007. Sparse fuzzy system generation by rule base extension. In Proceedings of 11th International Conference on Intelligent Engineering Systems (INES 2007). Budapest, Hungary, 99-104.
  19. Kovács, G. L., 2006. Management and production control issues of distributed enterprises. In Proceedings of PROLAMAT 2006 IFIP TC5 International Conference. Shanghai, China, 11-20.
  20. Orlowska-Kowalska, T., Szabat, K., 2008. Damping of torsional vibrations in two-mass system using adaptive sliding neuro-fuzzy approach. IEEE Transactions on Industrial Informatics. 4, 47-57.
  21. Petres, Z., Baranyi, P., Korondi, P., Hashimoto, H., 2007. Trajectory tracking by TP model transformation: case study of a benchmark problem. IEEE Transactions on Industrial Electronics. 54, 1654-1663.
  22. Pfeiffer, D., Stephens, R. I., Vinsonneau, B., Burnham, K. J., 2006. Iterative Feedback Tuning applied to a ship positioning controller. In Proceedings of 18th International Conference on Systems Engineering (ICSE 2006). Coventry, UK, 353-358.
  23. Precup, R.-E., Preitl, S., Fodor, J., Ursache, I.-B., Clep, P. A., Kilyeni, S., 2008a. Experimental validation of Iterative Feedback Tuning solutions for inverted pendulum crane mode control. In Proceedings of 2008 Conference on Human System Interaction (HSI 2008). Krakow, Poland, 536-541.
  24. Precup, R.-E., Preitl, S., Rudas, I. J., Tomescu, M. L., Tar, J. K., 2008b. Design and experiments for a class of fuzzy controlled servo systems. IEEE/ASME Transactions on Mechatronics. 13, 22-35.
  25. Savaresi S. M., Tanelli, M., Taroni, F., Previdi, F. Bittanti, S., Prandoni, V., 2006. Analysis and design of an automatic motion-inverter. IEEE/ASME Transactions on Mechatronics. 11, 346-357.
  26. Škrjanc, I., Blažic, S., Agamennoni, O., 2005. Interval fuzzy model identification using l8-norm. IEEE Transactions on Fuzzy Systems, 13, 561-568.
  27. Vašcák, J., 2008. Fuzzy cognitive maps in path planning. Acta Technica Jaurinensis, Series Intelligentia Computatorica. 1, 467-479.
Download


Paper Citation


in Harvard Style

Rădac M., Precup R., Petriu E., Preitl S. and Dragoş C. (2009). ITERATIVE FEEDBACK TUNING APPROACH TO A CLASS OF STATE FEEDBACK-CONTROLLED SERVO SYSTEMS . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-99-9, pages 41-48. DOI: 10.5220/0002204400410048


in Bibtex Style

@conference{icinco09,
author={Mircea-Bogdan Rădac and Radu-Emil Precup and Emil M. Petriu and Stefan Preitl and Claudia-Adina Dragoş},
title={ITERATIVE FEEDBACK TUNING APPROACH TO A CLASS OF STATE FEEDBACK-CONTROLLED SERVO SYSTEMS},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2009},
pages={41-48},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002204400410048},
isbn={978-989-8111-99-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - ITERATIVE FEEDBACK TUNING APPROACH TO A CLASS OF STATE FEEDBACK-CONTROLLED SERVO SYSTEMS
SN - 978-989-8111-99-9
AU - Rădac M.
AU - Precup R.
AU - Petriu E.
AU - Preitl S.
AU - Dragoş C.
PY - 2009
SP - 41
EP - 48
DO - 10.5220/0002204400410048