EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION
Stefan Böttcher
2009
Abstract
Motivated by noise-driven cellular automata models of self-organized criticality (SOC), a new paradigm for the treatment of hard combinatorial optimization problems is proposed. An extremal selection process preferentially advances variables in a poor local state. The ensuing dynamic process creates broad fluctuations to explore energy landscapes widely, with frequent returns to near-optimal configurations. This Extremal Optimization heuristic is evaluated theoretically and numerically.
References
- Aarts, E. H. L. and van Laarhoven, P. J. M. (1987). Simulated Annealing: Theory and Applications. Reidel, Dordrecht.
- Bak, P. (1996). How Nature works: The Science of SelfOrganized Criticality. Copernicus, New York.
- Bak, P. and Sneppen, K. (1993). Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett., 71:4083-4086.
- Bak, P., Tang, C., and Wiesenfeld, K. (1987). Selforganized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 59(4):381-384.
- Bantilan, F. T. and Palmer, R. G. (1981). Magnetic properties of a model spin glass and the failure of linear response theory. J. Phys. F: Metal Phys., 11:261-266.
- Boettcher, S. (1999). Extremal optimization and graph partitioning at the percolation threshold. J. Math. Phys. A: Math. Gen., 32:5201-5211.
- Boettcher, S. (2003). Numerical results for ground states of mean-field spin glasses at low connectivities. Phys. Rev. B, 67:R060403.
- Boettcher, S. (2005). Extremal optimization for Sherrington-Kirkpatrick spin glasses. Eur. Phys. J. B, 46:501-505.
- Boettcher, S. (2009). Simulations of Energy Fluctuations in the Sherrington-Kirkpatrick Spin Glass. (submitted) arXiv:0906.1292.
- Boettcher, S. and Frank, M. (2006). Optimizing at the ergodic edge. Physica A, 367:220-230.
- Boettcher, S. and Grigni, M. (2002). Jamming model for the extremal optimization heuristic. J. Phys. A: Math. Gen., 35:1109-1123.
- Boettcher, S. and Paczuski, M. (1996). Ultrametricity and memory in a solvable model of self-organized criticality. Phys. Rev. E, 54:1082.
- Boettcher, S. and Percus, A. G. (1999). Extremal optimization: Methods derived from co-evolution. In GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pages 825-832, Morgan Kaufmann, San Francisco.
- Boettcher, S. and Percus, A. G. (2000). Nature's way of optimizing. Artificial Intelligence, 119:275.
- Boettcher, S. and Percus, A. G. (2001a). Extremal optimization for graph partitioning. Phys. Rev. E, 64:026114.
- Boettcher, S. and Percus, A. G. (2001b). Optimization with extremal dynamics. Phys. Rev. Lett., 86:5211-5214.
- Boettcher, S. and Percus, A. G. (2004). Extremal optimization at the phase transition of the 3-coloring problem. Phys. Rev. E, 69:066703.
- Boettcher, S. and Sibani, P. (2005). Comparing extremal and thermal explorations of energy landscapes. Eur. Phys. J. B, 44:317-326.
- Dall, J. and Sibani, P. (2001). Faster Monte Carlo Simulations at Low Temperatures: The Waiting Time Method. Computer Physics Communication, 141:260-267.
- Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing community structure identification. J. Stat. Mech.-Theo. Exp., P09008.
- de Sousa, F. L., Ramos, F. M., Galski, R. L., and Muraoka, I. (2004a). Generalized extremal optimization: A new meta-heuristic inspired by a model of natural evolution. Recent Developments in Biologically Inspired Computing.
- de Sousa, F. L., Vlassov, V., and Ramos, F. M. (2003). Generalized Extremal Optimization for solving complex optimal design problems. Lecture Notes in Computer Science, 2723:375-376.
- de Sousa, F. L., Vlassov, V., and Ramos, F. M. (2004b). Heat pipe design through generalized extremal optimization. Heat Transf. Eng., 25:34-45.
- Duch, J. and Arenas, A. (2005). Community detection in complex networks using Extremal Optimization. Phys. Rev. E, 72:027104.
- Fischer, K. H. and Hertz, J. A. (1991). Spin Glasses. Cambridge University Press, Cambridge.
- Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading.
- Gould, S. and Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3:115-151.
- Hartmann, A. K. and Rieger, H., editors (2004a). New Optimization Algorithms in Physics. Springer, Berlin.
- Hartmann, A. K. (2001). Ground-state clusters of two, three-, and four-dimensional §J Ising spin glasses. Phys. Rev. E, 63.
- Hartmann, A. K. and Rieger, H. (2004b). New Optimization Algorithms in Physics. Wiley-VCH, Berlin.
- Heilmann, F., Hoffmann, K. H., and Salamon, P. (2004). Best possible probability distribution over Extremal Optimization ranks. Europhys. Lett., 66:305-310.
- Hoffmann, K. H., Heilmann, F., and Salamon, P. (2004). Fitness threshold accepting over Extremal Optimization ranks. Phys. Rev. E, 70:046704.
- Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco.
- Iwamatsu, M. and Okabe, Y. (2004). Basin hopping with occasional jumping. Chem. Phys. Lett., 399:396-400.
- Kauffman, S. A. and Johnsen, S. (1991). Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theor. Biol., 149:467-505.
- Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220:671- 680.
- Lundy, M. and Mees, A. (1996). Convergence of an Annealing Algorithm. Math. Programming, 34:111-124.
- Mang, N. G. and Zeng, C. (2008). Reference energy extremal optimization: A stochastic search algorithm applied to computational protein design. J. Comp. Chem., 29:1762-1771.
- Menai, M. E. and Batouche, M. (2002). Extremal Optimization for Max-SAT. In Proceedings of the International Conference on Artificial Intelligence (IC-AI), pages 954-958.
- Menai, M. E. and Batouche, M. (2003a). A Bose-Einstein Extremal Optimization method for solving real-world instances of maximum satisfiablility. In Proceedings of the International Conference on Artificial Intelligence (IC-AI), pages 257-262.
- Menai, M. E. and Batouche, M. (2003b). Efficient initial solution to Extremal Optimization algorithm for weighted MAXSAT problem. Lecture Notes in Computer Science, 2718:592-603.
- Meshoul, S. and Batouche, M. (2002a). Ant colony system with extremal dynamics for point matching and pose estimation. In 16th International Conference on Pattern Recognition (ICPR'02), volume 3, page 30823.
- Meshoul, S. and Batouche, M. (2002b). Robust point correspondence for image registration using optimization with extremal dynamics. Lecture Notes in Computer Science, 2449:330-337.
- Meshoul, S. and Batouche, M. (2003). Combining Extremal Optimization with singular value decomposition for effective point matching. Int. J. Pattern Rec. and AI, 17:1111-1126.
- Middleton, A. A. (2004). Improved Extremal Optimization for the Ising spin glass. Phys. Rev. E, 69:055701(R).
- Neda, Z., Florian, R., Ravasz, M., Libal, A., and Gy örgyi, G. (2006). Phase transition in an optimal clusterization model. Physica A., 362:357-368.
- Onody, R. N. and de Castro, P. A. (2003). Optimization and self-organized criticality in a magnetic system. Physica A, 322:247-255.
- Palmer, R. G., Stein, D. L., Abraham, E., and Anderson, P. W. (1984). Models of hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett., 53:958- 961.
- Percus, A., Istrate, G., and Moore, C. (2006). Computational Complexity and Statistical Physics. Oxford University Press, New York.
- Raup, M. (1986). Biological extinction in earth history. Science, 231:1528-1533.
- Shmygelska, A. (2007). An extremal optimization search method for the protein folding problem: the go-model example. In GECCO 7807: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pages 2572-2579, New York, NY, USA. ACM.
- Svenson, P. (2004). Extremal Optimization for sensor report pre-processing. Proc. SPIE, 5429:162-171.
- Wang, J. (2003). Transition matrix Monte Carlo and flathistogram algorithm. In AIP Conf. Proc. 690: The Monte Carlo Method in the Physical Sciences, pages 344-348.
- Wang, J.-S. and Okabe, Y. (2003). Comparison of Extremal Optimization with flat-histogram dynamics for finding spin-glass ground states. J. Phys. Soc. Jpn., 72:1380.
- Yom-Tov, E., Grossman, A., and Inbar, G. F. (2001). Movement-related potentials during the performance of a motor task i: The effect of learning and force. Biological Cybernatics, 85:395-399.
- Zhou, T., Bai, W.-J., Cheng, L.-J., and Wang, B.-H. (2005). Continuous Extremal Optimization for Lennard-Jones clusters. Phys. Rev. E, 72:016702.
Paper Citation
in Harvard Style
Böttcher S. (2009). EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 111-118. DOI: 10.5220/0002314101110118
in Bibtex Style
@conference{icec09,
author={Stefan Böttcher},
title={EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={111-118},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002314101110118},
isbn={978-989-674-014-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION
SN - 978-989-674-014-6
AU - Böttcher S.
PY - 2009
SP - 111
EP - 118
DO - 10.5220/0002314101110118