EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION

Stefan Böttcher

2009

Abstract

Motivated by noise-driven cellular automata models of self-organized criticality (SOC), a new paradigm for the treatment of hard combinatorial optimization problems is proposed. An extremal selection process preferentially advances variables in a poor local state. The ensuing dynamic process creates broad fluctuations to explore energy landscapes widely, with frequent returns to near-optimal configurations. This Extremal Optimization heuristic is evaluated theoretically and numerically.

References

  1. Aarts, E. H. L. and van Laarhoven, P. J. M. (1987). Simulated Annealing: Theory and Applications. Reidel, Dordrecht.
  2. Bak, P. (1996). How Nature works: The Science of SelfOrganized Criticality. Copernicus, New York.
  3. Bak, P. and Sneppen, K. (1993). Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett., 71:4083-4086.
  4. Bak, P., Tang, C., and Wiesenfeld, K. (1987). Selforganized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 59(4):381-384.
  5. Bantilan, F. T. and Palmer, R. G. (1981). Magnetic properties of a model spin glass and the failure of linear response theory. J. Phys. F: Metal Phys., 11:261-266.
  6. Boettcher, S. (1999). Extremal optimization and graph partitioning at the percolation threshold. J. Math. Phys. A: Math. Gen., 32:5201-5211.
  7. Boettcher, S. (2003). Numerical results for ground states of mean-field spin glasses at low connectivities. Phys. Rev. B, 67:R060403.
  8. Boettcher, S. (2005). Extremal optimization for Sherrington-Kirkpatrick spin glasses. Eur. Phys. J. B, 46:501-505.
  9. Boettcher, S. (2009). Simulations of Energy Fluctuations in the Sherrington-Kirkpatrick Spin Glass. (submitted) arXiv:0906.1292.
  10. Boettcher, S. and Frank, M. (2006). Optimizing at the ergodic edge. Physica A, 367:220-230.
  11. Boettcher, S. and Grigni, M. (2002). Jamming model for the extremal optimization heuristic. J. Phys. A: Math. Gen., 35:1109-1123.
  12. Boettcher, S. and Paczuski, M. (1996). Ultrametricity and memory in a solvable model of self-organized criticality. Phys. Rev. E, 54:1082.
  13. Boettcher, S. and Percus, A. G. (1999). Extremal optimization: Methods derived from co-evolution. In GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, pages 825-832, Morgan Kaufmann, San Francisco.
  14. Boettcher, S. and Percus, A. G. (2000). Nature's way of optimizing. Artificial Intelligence, 119:275.
  15. Boettcher, S. and Percus, A. G. (2001a). Extremal optimization for graph partitioning. Phys. Rev. E, 64:026114.
  16. Boettcher, S. and Percus, A. G. (2001b). Optimization with extremal dynamics. Phys. Rev. Lett., 86:5211-5214.
  17. Boettcher, S. and Percus, A. G. (2004). Extremal optimization at the phase transition of the 3-coloring problem. Phys. Rev. E, 69:066703.
  18. Boettcher, S. and Sibani, P. (2005). Comparing extremal and thermal explorations of energy landscapes. Eur. Phys. J. B, 44:317-326.
  19. Dall, J. and Sibani, P. (2001). Faster Monte Carlo Simulations at Low Temperatures: The Waiting Time Method. Computer Physics Communication, 141:260-267.
  20. Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing community structure identification. J. Stat. Mech.-Theo. Exp., P09008.
  21. de Sousa, F. L., Ramos, F. M., Galski, R. L., and Muraoka, I. (2004a). Generalized extremal optimization: A new meta-heuristic inspired by a model of natural evolution. Recent Developments in Biologically Inspired Computing.
  22. de Sousa, F. L., Vlassov, V., and Ramos, F. M. (2003). Generalized Extremal Optimization for solving complex optimal design problems. Lecture Notes in Computer Science, 2723:375-376.
  23. de Sousa, F. L., Vlassov, V., and Ramos, F. M. (2004b). Heat pipe design through generalized extremal optimization. Heat Transf. Eng., 25:34-45.
  24. Duch, J. and Arenas, A. (2005). Community detection in complex networks using Extremal Optimization. Phys. Rev. E, 72:027104.
  25. Fischer, K. H. and Hertz, J. A. (1991). Spin Glasses. Cambridge University Press, Cambridge.
  26. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading.
  27. Gould, S. and Eldredge, N. (1977). Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3:115-151.
  28. Hartmann, A. K. and Rieger, H., editors (2004a). New Optimization Algorithms in Physics. Springer, Berlin.
  29. Hartmann, A. K. (2001). Ground-state clusters of two, three-, and four-dimensional §J Ising spin glasses. Phys. Rev. E, 63.
  30. Hartmann, A. K. and Rieger, H. (2004b). New Optimization Algorithms in Physics. Wiley-VCH, Berlin.
  31. Heilmann, F., Hoffmann, K. H., and Salamon, P. (2004). Best possible probability distribution over Extremal Optimization ranks. Europhys. Lett., 66:305-310.
  32. Hoffmann, K. H., Heilmann, F., and Salamon, P. (2004). Fitness threshold accepting over Extremal Optimization ranks. Phys. Rev. E, 70:046704.
  33. Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco.
  34. Iwamatsu, M. and Okabe, Y. (2004). Basin hopping with occasional jumping. Chem. Phys. Lett., 399:396-400.
  35. Kauffman, S. A. and Johnsen, S. (1991). Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theor. Biol., 149:467-505.
  36. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220:671- 680.
  37. Lundy, M. and Mees, A. (1996). Convergence of an Annealing Algorithm. Math. Programming, 34:111-124.
  38. Mang, N. G. and Zeng, C. (2008). Reference energy extremal optimization: A stochastic search algorithm applied to computational protein design. J. Comp. Chem., 29:1762-1771.
  39. Menai, M. E. and Batouche, M. (2002). Extremal Optimization for Max-SAT. In Proceedings of the International Conference on Artificial Intelligence (IC-AI), pages 954-958.
  40. Menai, M. E. and Batouche, M. (2003a). A Bose-Einstein Extremal Optimization method for solving real-world instances of maximum satisfiablility. In Proceedings of the International Conference on Artificial Intelligence (IC-AI), pages 257-262.
  41. Menai, M. E. and Batouche, M. (2003b). Efficient initial solution to Extremal Optimization algorithm for weighted MAXSAT problem. Lecture Notes in Computer Science, 2718:592-603.
  42. Meshoul, S. and Batouche, M. (2002a). Ant colony system with extremal dynamics for point matching and pose estimation. In 16th International Conference on Pattern Recognition (ICPR'02), volume 3, page 30823.
  43. Meshoul, S. and Batouche, M. (2002b). Robust point correspondence for image registration using optimization with extremal dynamics. Lecture Notes in Computer Science, 2449:330-337.
  44. Meshoul, S. and Batouche, M. (2003). Combining Extremal Optimization with singular value decomposition for effective point matching. Int. J. Pattern Rec. and AI, 17:1111-1126.
  45. Middleton, A. A. (2004). Improved Extremal Optimization for the Ising spin glass. Phys. Rev. E, 69:055701(R).
  46. Neda, Z., Florian, R., Ravasz, M., Libal, A., and Gy örgyi, G. (2006). Phase transition in an optimal clusterization model. Physica A., 362:357-368.
  47. Onody, R. N. and de Castro, P. A. (2003). Optimization and self-organized criticality in a magnetic system. Physica A, 322:247-255.
  48. Palmer, R. G., Stein, D. L., Abraham, E., and Anderson, P. W. (1984). Models of hierarchically constrained dynamics for glassy relaxation. Phys. Rev. Lett., 53:958- 961.
  49. Percus, A., Istrate, G., and Moore, C. (2006). Computational Complexity and Statistical Physics. Oxford University Press, New York.
  50. Raup, M. (1986). Biological extinction in earth history. Science, 231:1528-1533.
  51. Shmygelska, A. (2007). An extremal optimization search method for the protein folding problem: the go-model example. In GECCO 7807: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pages 2572-2579, New York, NY, USA. ACM.
  52. Svenson, P. (2004). Extremal Optimization for sensor report pre-processing. Proc. SPIE, 5429:162-171.
  53. Wang, J. (2003). Transition matrix Monte Carlo and flathistogram algorithm. In AIP Conf. Proc. 690: The Monte Carlo Method in the Physical Sciences, pages 344-348.
  54. Wang, J.-S. and Okabe, Y. (2003). Comparison of Extremal Optimization with flat-histogram dynamics for finding spin-glass ground states. J. Phys. Soc. Jpn., 72:1380.
  55. Yom-Tov, E., Grossman, A., and Inbar, G. F. (2001). Movement-related potentials during the performance of a motor task i: The effect of learning and force. Biological Cybernatics, 85:395-399.
  56. Zhou, T., Bai, W.-J., Cheng, L.-J., and Wang, B.-H. (2005). Continuous Extremal Optimization for Lennard-Jones clusters. Phys. Rev. E, 72:016702.
Download


Paper Citation


in Harvard Style

Böttcher S. (2009). EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 111-118. DOI: 10.5220/0002314101110118


in Bibtex Style

@conference{icec09,
author={Stefan Böttcher},
title={EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={111-118},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002314101110118},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - EVOLUTIONARY DYNAMICS OF EXTREMAL OPTIMIZATION
SN - 978-989-674-014-6
AU - Böttcher S.
PY - 2009
SP - 111
EP - 118
DO - 10.5220/0002314101110118