SELECTING THE MOST ACCURATE FORECASTING METHOD FOR MEDICAL DIAGNOSIS. BREAST CANCER DIAGNOSIS - A Case Study

Marc Almiñana, Alejandro Rabasa, Laureano Santamaría, Laureano F. Escudero, Antonio F. Compañ, Agustín Pérez-Martín

2010

Abstract

Different methods are usually applied for medical diagnosis problems. Most of them are only based on expert knowledge and the results are provided by model-driven methods and they are built from inflexible mathematical expressions. In this paper we suggest a Data-Driven perspective to facilitate the medical expert labour on diagnosis tasks. Furthermore, this paper offers a step by step procedure to select the most accurate forecasting method depending on the nature of the variables and the structure problem constraints. To validate such a selecting procedure, we apply it to a breast cancer diagnosis problem as a real case study.

References

  1. Almiñana, M., Escudero, L.F., Pérez, A., Rabasa, A., Sánchez, C., Santamaría, L., 2008. Reducting Classification Rule Systems Applied To Thyroid Functional Diagnosis. Proceedings XXIV International Biometric Conference. University College Dublin
  2. Block, P., Paern, J., Hüllermeier, E., Sanschagrin, P., Sotriffer, C., Klebe, G. , 2006. Physicochemical Descriptors To Discriminate Protein-Protein Interactions In Permanent And Transient Complexes Selected By Means Of Machine Learning Algorithms. Wiley Inter Science. Proteins: Structure, Function, and Bioinformatics 65, 607-622
  3. Chan, A.L., Chen, J.X., Wang, H.Y. , 2006. Application Of Data Mining To Predict The Dosage Of Vancomycin As An Outcome Variable In A Teaching Hospital Population. Dustri-Verlag. International Journal of Clinical Pharmacology and Therapeutics 44 , 11, 533-538
  4. Gamberger, D., Lavrac, N., Krstacic, G. , 2002. Confirmation Rule Induction And Its Applications To Coronary Heart Disease Diagnosis And Risk Group Discovery. IOS Press. Journal of Intelligent and Fuzzy Systems 12 , 1, 35-48
  5. Gorzalczany, M.B., Gradzki, P. , 1999. Computational Intelligence In Medical Decision Support -A Comparison Of Two Neuro-Fuzzy Systems. Proc. ISIE'99. Bled, Slovenia
  6. Guler, N., Gurgen, F.S. , 2004. The Effects Of Data Properties On Local, Piecewise, Global, Mixture Of Experts, And Boundary-Optimized Classifiers For Medical Decision Making. Springer-Verlag. Computer and Information Sciences, Proc. Lecture Notes in Computer Science 3280, 51-61
  7. Ho, S.H., Jee, S.H., Lee, J.E., Park, J.S. , 2004. On Risk Factors For Cervical Cancer Using Induction Technique. Elsevier. Expert Systems with Applications 27, 97-105
  8. Kohli, R., Krishnamurti, R., Jedidi, K. , 2006. SubsetConjunctive Rules For Breast Cancer Diagnosis. Elsevier. Discrete Applied Mathematics 154, 1100 - 1112
  9. Kukar, M., Groselj, C. , 2005. Transductive Machine Learning For Reliable Medical Diagnostics. Springer Science+Business Media, Inc. Journal of Medical Systems 29, 1
  10. Kurgan, L.A., Cios, K.J. , 2004. CAIM Discretization Algorithm. IEEE Computer Soc. IEEE Transactions on Knowledge and Data Engineering 16, , 2, 145- 153
  11. Kusiak, A., Dixon, B., Shah, S. , 2004. Predicting Survival Time For Kidney Dialysis Patients:A Data Mining Approach. Elsevier. Computers in Biology and Medicine. , accepted
  12. Lemke, F., Müller, J-A. , 2001. Medical Data Analysis Using Self-Organizing Data Mining Technologies. Systems Analysis Modelling Simulation 43 ,10, 1399- 1408
  13. Mol, B.W., van der Veen, F., Bossuyt, P.M.M. , 1999. Implementation Of Probabilistic Decision Rules Improves The Predictive Values Of Algorithms In The Diagnostic Management Of Ectopic Pregnancy. European Society of Human Reproduction and Embryology. Human Reproduction , 14 11, 2855- 2862
  14. Mugambia, E.M., Hunterb, A., Oatleyd, G., Kennedy, L. , 2004. Polynomial-Fuzzy Decission Treestructures For Classifying Medical Data. Elsevier. Knowledge Based Systems, 17, 81-87
  15. Nilsson, M., Sollenborn, M. , 2004. Advancements And Trends In Medical Case-Based Reasoning: An Overview Of Systems And System Development. American Association for Artificial Intelligence. Malardalen University. Technical Report
  16. Park, Y.J., Kim, B-Ch., Chun, S-H. , 2006. New Knowledge Extraction Technique Using Probability For Case-Based Reasoning: Application To Medical Diagnosis. Blackwell Publishing Ltd. Expert Systems, 23
  17. Pattaraintakorn, P., Cercone, N., Naruedomkul, K. , 2005. Hybrid Intelligent Systems: Selecting Attributes For Soft-Computing Analysis. Proceedings of the 29th Annual International Computer Software and Applications Conference
  18. Podgorelec, V., Kokol, P., Stiglic, M.M., Hericko, M., Rozman, I. , 2005. Knowledge Discovery With Classification Rules In A Cardiovascular Dataset. Elsevier. Computer Methods and Programs in Biomedicine 80 Suppl. 1, 39-49
  19. Polat, K., Sahan, S., Kodaz, H., Gunes, S. , 2005. A New Classification Method For Breast Cancer Diagnosis: Feature Selection Artificial Immune Recognition System , FS-AIRS. Springer-Verlag. Advances in Natural Computation 2, Proc. Lecture Notes in Computer Science 3611, 830-838
  20. Shi, W., Wahba, G., Wright, S., Lee, K., Klein, R., Klein, B. , 2006. LASSO-Pattern Search Algorithm With Application To Ophthalmology Data. University of Wisconsin. Technical Report, no. 1131
  21. Shortliffe, E.H., Buchanan, B.G. , 1975. A Model Of Inexact Reasoning In Medicine. Mathematical Biosciences 23, 351-379
  22. Solomatine, D.P. , 2002 [a]. Data-Driven Modelling: Paradigm, Methods, Experiences. Proc. 5th International Conference on Hydroinformatics, Cardiff, UK.
  23. Solomatine, D.P. , 2002 [b]. Applications Of DataDriven Modeling And Machine Learning In Control Of Water Resources. Idea Group Publishing. Computational Intelligence in Control, 197-217
  24. Suwa, M., Scott, A.C., Shortliffe, E.H. , 1982. Completeness And Consistency In A Rule-Based System. AAAI. The AI Magazine 3, 16-21
  25. Tahir, M.A., Bouridane, A. , 2006. Novel Round-Robin Tabu Search Algorithm For Prostate Cancer Classification And Diagnosis Using Multispectral Imagery. IEEE-Inst Electrical Electronics Eng. IEEE Transactions on Information Technology in Biomedicine 10 , 4, 782-793
  26. Timm, I.J. , 1998. Automatic Generation Of Risk Classification For Decision Support In Critical Care. Ed. Bellazzi and Zupan, Brighton, UK. ECAI 7898 Workshop Notes on 'Intelligent Data Analysis in Medicine and Pharmacology
  27. Wang, X., Yang, J., Jensen, R., Liu, X. , 2006. Rough Set Feature Selection And Rule Induction For Prediction Of Malignancy Degree In Brain Glioma. Elsevier. Computer methods and programs in biomedicine 8, 3, 147-156
Download


Paper Citation


in Harvard Style

Almiñana M., Rabasa A., Santamaría L., F. Escudero L., F. Compañ A. and Pérez-Martín A. (2010). SELECTING THE MOST ACCURATE FORECASTING METHOD FOR MEDICAL DIAGNOSIS. BREAST CANCER DIAGNOSIS - A Case Study . In Proceedings of the Third International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2010) ISBN 978-989-674-016-0, pages 142-148. DOI: 10.5220/0002590701420148


in Bibtex Style

@conference{healthinf10,
author={Marc Almiñana and Alejandro Rabasa and Laureano Santamaría and Laureano F. Escudero and Antonio F. Compañ and Agustín Pérez-Martín},
title={SELECTING THE MOST ACCURATE FORECASTING METHOD FOR MEDICAL DIAGNOSIS. BREAST CANCER DIAGNOSIS - A Case Study},
booktitle={Proceedings of the Third International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2010)},
year={2010},
pages={142-148},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002590701420148},
isbn={978-989-674-016-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2010)
TI - SELECTING THE MOST ACCURATE FORECASTING METHOD FOR MEDICAL DIAGNOSIS. BREAST CANCER DIAGNOSIS - A Case Study
SN - 978-989-674-016-0
AU - Almiñana M.
AU - Rabasa A.
AU - Santamaría L.
AU - F. Escudero L.
AU - F. Compañ A.
AU - Pérez-Martín A.
PY - 2010
SP - 142
EP - 148
DO - 10.5220/0002590701420148