PROBABILISTIC PATIENT MONITORING USING EXTREME VALUE THEORY - A Multivariate, Multimodal Methodology for Detecting Patient Deterioration
Samuel Hugueny, David A. Clifton, Lionel Tarassenko
2010
Abstract
Conventional patient monitoring is performed by generating alarms when vital signs exceed pre-determined thresholds, but the false-alarm rate of such monitors in hospitals is so high that alarms are typically ignored. We propose a principled, probabilistic method for combining vital signs into a multivariate model of patient state, using extreme value theory (EVT) to generate robust alarms if a patient's vital signs are deemed to have become sufficiently ``extreme''. Our proposed formulation operates many orders of magnitude faster than existing methods, allowing on-line learning of models, leading ultimately to patient-specific monitoring.
References
- Clifton, D., Hugueny, S., and Tarassenko, L. (2009a). A comparison of approaches to multivariate extreme value theory for novelty detection. Proceedings of IEEE Workshop on Statistical Signal Processing.
- Clifton, D., Hugueny, S., and Tarassenko, L. (2009b). Novelty detection with multivariate extreme value theory, part I: Numerical approach for multimodal estimation. Proceedings of IEEE Workshop on Machine Learning in Signal Processing.
- Clifton, D., McGrogan, N., Tarassenko, L., King, S., Anuzis, P., and King, D. (2008a). Bayesian extreme value statistics for novelty detection in gas-turbine engines. In Proceedings of IEEE Aerospace, Montana, USA, pages 1-11.
- Clifton, D., Tarassenko, L., Sage, C., and Sundaram, S. (2008b). Condition monitoring of manufacturing processes. In Proceedings of Condition Monitoring 2008, Edinburgh, UK, pages 273-279.
- Ebden, M., Stranjak, A., Dutta, P., and Rogers, A. (2008). A multi-agent simulation system for prediction and scheduling of aero engine overhaul. In Proceedings of the 7th Conference on Autonomous Agents and Multiagent Systems (AAMAS), Estoril, Portugal.
- Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer.
- Fisher, R. and Tippett, L. (1928). Limiting forms of the frequency distributions of the largest or smallest members of a sample. Proc. Camb. Philos. Soc., 24:180- 190.
- Hann, A. (2008). Multi-parameter monitoring for early warning of patient deterioration. PhD thesis, University of Oxford.
- Hodgetts, T., Kenward, G., Vlackonikolis, I., Payne, S., Castle, N., Crouch, R., Ineson, N., and Shaikh, L. (2002). Incidence, location, and reasons for avoidable in-hospital cardiac arrest in a district general hospital. Resuscitation, 54:115-123.
- Hugueny, S., Clifton, D., and Tarassenko, L. (2009). Novelty detection with multivariate extreme value theory, part II: Analytical approach for unimodal estimation. Proceedings of IEEE Workshop on Machine Learning in Signal Processing.
- Mayrose, I., Friedman, N., and Pupko, T. (2005). A gamma mixture model better accounts for among site rate heterogeneity. Bioinformatics, 21(2):151-158.
- McQuillan, P., Pilkington, S., Allan, A., Taylor, B., Short, A., Morgan, G., Nielsen, M., Barrett, D., and Smith, G. (1998). Confidential inquiry into quality of care before admission to intensive care. British Medical Journal, 316:1853-1858.
- Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33:1065-1076.
- Svensen, M. and Bishop, C. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64:235-252.
- Tarassenko, L., Hann, A., and Young, D. (2006). Integrated monitoring and analysis for early warning of patient deterioration. British Journal of Anaesthesia, 98(1):149-152.
- Tsien, C. and Fackler, J. (1997). Poor prognosis for existing monitors in the intensive care unit. Critical Care Medicine, 25(4):614-619.
Paper Citation
in Harvard Style
Hugueny S., A. Clifton D. and Tarassenko L. (2010). PROBABILISTIC PATIENT MONITORING USING EXTREME VALUE THEORY - A Multivariate, Multimodal Methodology for Detecting Patient Deterioration . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 5-12. DOI: 10.5220/0002690200050012
in Bibtex Style
@conference{biosignals10,
author={Samuel Hugueny and David A. Clifton and Lionel Tarassenko},
title={PROBABILISTIC PATIENT MONITORING USING EXTREME VALUE THEORY - A Multivariate, Multimodal Methodology for Detecting Patient Deterioration},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={5-12},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002690200050012},
isbn={978-989-674-018-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - PROBABILISTIC PATIENT MONITORING USING EXTREME VALUE THEORY - A Multivariate, Multimodal Methodology for Detecting Patient Deterioration
SN - 978-989-674-018-4
AU - Hugueny S.
AU - A. Clifton D.
AU - Tarassenko L.
PY - 2010
SP - 5
EP - 12
DO - 10.5220/0002690200050012