FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS

Jin Liu, Tuan D. Pham

2010

Abstract

Based on the motivation by computational challenges in microarray data analysis, we propose a fuzzy hypercluster analysis as a new framework for pattern classification using such type of data. This approach uses hyperplanes to represent the cluster centers in the fuzzy c-means algorithm. We present in this position paper the formulation of a hyperplane-based fuzzy objective function and suggest possible solutions. Fuzzy hyper-clustering approach appears to have potential as a novel alternative to analyze microarray gene expression data. Furthermore, the proposed hyper-clustering algorithm is not only confined to microarray data analysis but can be used as a general approach for classifying closely related features.

References

  1. Asyali, M. H. and Alci, M. (2005). Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods. Bioinformatics, 21:644-649.
  2. Baken, K. A., Pennings, J. L., Jonker, M. J., Schaap, M. M., de Vries, A., van Steeg, H., Breit, T. M., and van Loveren, H. (2008). Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening. Toxicology and Applied Pharmacology, 226:46-59.
  3. Bradley, P. S. and Mangasarian, O. L. (2000). k-plane clustering. J. Global Optimization, 16:23-32.
  4. Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge.
  5. Ding, C. and Peng, H. (2003). Minimum redundancy feature selection from microarray gene expression data. In Proc. 2003 IEEE Computer Society Bioinformatics Conference, pages 523-529.
  6. Dougherty, E. R., Barrera, J., Brun, M., Kim, S., Cesar, R. M., Chen, Y., Bittner, M., and Trent, J. M. (2002). Inference from clustering with application to geneexpression microarrays. J. Computational Biology, 9:105-126.
  7. Feng, H. M., Chen, C. Y., and Ye, F. (2006). Adaptive hyper-fuzzy partition particle swarm optimization clustering algorithm. Cybernetics and Systems, 37:463-479.
  8. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531-537.
  9. Jayadeva, Khemchandaniand, R., and Chandra, S. (2007). Fuzzy multi-category proximal support vector classification via generalized eigenvalues. Soft Computing, 11:679-685.
  10. Pham, T. D. (2005). An optimally weighted fuzzy k-NN algorithm. In Proc. 2005 Int. Conf. Advances in Pattern Recognition, pages 239-247.
  11. Pham, T. D., Wells, C., and Crane, D. I. (2006). Analysis of microarray gene expression data. Current Bioinformatics, 1:37-53.
  12. Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., and Levy, S. (2005). A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21:631-643.
  13. Suzuki, T., Hashimoto, S.-i., Toyoda, N., Nagai, S., Yamazaki, N., Dong, H.-Y., Sakai, J., Yamashita, T., Nukiwa, T., and Matsushima, K. (2000). Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. Blood, 96:2584-2591.
  14. Yang, X., Chen, S., Chen, B., and Pan, Z. (2009). Proximal support vector machine using local information. Neurocomputing, in-print.
Download


Paper Citation


in Harvard Style

Liu J. and D. Pham T. (2010). FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 415-418. DOI: 10.5220/0002719504150418


in Bibtex Style

@conference{biosignals10,
author={Jin Liu and Tuan D. Pham},
title={FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={415-418},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002719504150418},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS
SN - 978-989-674-018-4
AU - Liu J.
AU - D. Pham T.
PY - 2010
SP - 415
EP - 418
DO - 10.5220/0002719504150418