FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS
Jin Liu, Tuan D. Pham
2010
Abstract
Based on the motivation by computational challenges in microarray data analysis, we propose a fuzzy hypercluster analysis as a new framework for pattern classification using such type of data. This approach uses hyperplanes to represent the cluster centers in the fuzzy c-means algorithm. We present in this position paper the formulation of a hyperplane-based fuzzy objective function and suggest possible solutions. Fuzzy hyper-clustering approach appears to have potential as a novel alternative to analyze microarray gene expression data. Furthermore, the proposed hyper-clustering algorithm is not only confined to microarray data analysis but can be used as a general approach for classifying closely related features.
References
- Asyali, M. H. and Alci, M. (2005). Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods. Bioinformatics, 21:644-649.
- Baken, K. A., Pennings, J. L., Jonker, M. J., Schaap, M. M., de Vries, A., van Steeg, H., Breit, T. M., and van Loveren, H. (2008). Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening. Toxicology and Applied Pharmacology, 226:46-59.
- Bradley, P. S. and Mangasarian, O. L. (2000). k-plane clustering. J. Global Optimization, 16:23-32.
- Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge.
- Ding, C. and Peng, H. (2003). Minimum redundancy feature selection from microarray gene expression data. In Proc. 2003 IEEE Computer Society Bioinformatics Conference, pages 523-529.
- Dougherty, E. R., Barrera, J., Brun, M., Kim, S., Cesar, R. M., Chen, Y., Bittner, M., and Trent, J. M. (2002). Inference from clustering with application to geneexpression microarrays. J. Computational Biology, 9:105-126.
- Feng, H. M., Chen, C. Y., and Ye, F. (2006). Adaptive hyper-fuzzy partition particle swarm optimization clustering algorithm. Cybernetics and Systems, 37:463-479.
- Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531-537.
- Jayadeva, Khemchandaniand, R., and Chandra, S. (2007). Fuzzy multi-category proximal support vector classification via generalized eigenvalues. Soft Computing, 11:679-685.
- Pham, T. D. (2005). An optimally weighted fuzzy k-NN algorithm. In Proc. 2005 Int. Conf. Advances in Pattern Recognition, pages 239-247.
- Pham, T. D., Wells, C., and Crane, D. I. (2006). Analysis of microarray gene expression data. Current Bioinformatics, 1:37-53.
- Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., and Levy, S. (2005). A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21:631-643.
- Suzuki, T., Hashimoto, S.-i., Toyoda, N., Nagai, S., Yamazaki, N., Dong, H.-Y., Sakai, J., Yamashita, T., Nukiwa, T., and Matsushima, K. (2000). Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. Blood, 96:2584-2591.
- Yang, X., Chen, S., Chen, B., and Pan, Z. (2009). Proximal support vector machine using local information. Neurocomputing, in-print.
Paper Citation
in Harvard Style
Liu J. and D. Pham T. (2010). FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 415-418. DOI: 10.5220/0002719504150418
in Bibtex Style
@conference{biosignals10,
author={Jin Liu and Tuan D. Pham},
title={FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={415-418},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002719504150418},
isbn={978-989-674-018-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - FUZZY HYPER-CLUSTERING FOR PATTERN CLASSIFICATION IN MICROARRAY GENE EXPRESSION DATA ANALYSIS
SN - 978-989-674-018-4
AU - Liu J.
AU - D. Pham T.
PY - 2010
SP - 415
EP - 418
DO - 10.5220/0002719504150418