DISCRIMINATION BETWEEN ISCHEMIC AND HEART-RATE RELATED ST-EPISODES - Non-linear Classification for an Online Capable Approach

S. Zaunseder, W. Aipperspach, R. Poll

2010

Abstract

Transient ST-epsiodes recognized in the ECG are regarded as marker of myocardial ischemia. As disturbed ST-sections may appear as ST-episodes a differentiated analysis is necessary to avoid misinterpretations. The presented study aims for the discrimination of ischemic and heart-rate related ST-episodes. Our approach includes the morphologic description of the ventricular repolarization by means of the Karhunen-Loève- Transformation and the non-linear classification using an artificial neural network. The proposed selection of used ECG segments guarantees that the classification procedure indicating ischemic attacks can be done before the complete episode is acquired. This online-capable approach gains accuracies up to 94,2 % for the discrimination of ischemic and heart-rate related ST-episodes.

References

  1. Blanchett, T., Kember, G. C., and Fenton, G. A. (1998). Kltbased quality controlled compression of single-lead ecg. IEEE Trans Biomed Eng, 45(7):942-945.
  2. Castells, F., Laguna, P., Sornmo, L., Bollmann, A., and Millet-Roig, J. (2007). Principal component analysis in ecg signal processing. EURASIP Journal on Advances in Signal Processing, 1:1-21.
  3. Dranca, L., Goni, A., and Illarramendi, A. (2006). Using decisiontrees for real-time ischemia detection. In CBMS, pages 719-726.
  4. Exarchos, T. P., Papaloukas, C., Fotiadis, D. I., and Michalis, L. K. (2006). An association rule miningbased methodology for automated detection of ischemic ecg beats. IEEE Trans Biomed Eng, 53(8):1531-1540.
  5. Faganeli, J. and Jager, F. (2008). Automatic distinguishing between ischemic and heart-rate related transient st segment episodes in ambulatory ecg records. In CinC, pages 381-384.
  6. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., and Stanley, H. E. (2000). Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation, 101(23):E215-E220.
  7. Jager, F. (2006). Advanced Methods And Tools for ECG Data Analysis, Chapter 9: Introduction to Feature Extraction, pages 245-264. Artech House.
  8. Jager, F., Moody, G. B., and Mark, R. G. (1998). Detection of transient st segment episodes during ambulatory ecg monitoring. Comput Biomed Res, 31(5):305- 322.
  9. Jager, F., Taddei, A., Moody, G. B., Emdin, M., Antolic, G., Dorn, R., Smrdel, A., Marchesi, C., and Mark, R. G. (2003). Long-term st database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med Biol Eng Comput, 41(2):172- 182.
  10. Kohavi, R. (1995). A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In IJCAI, pages 1137-1145.
  11. Laguna, P., Moody, G. B., Garca, J., Goldberger, A. L., and Mark, R. G. (1999). Analysis of the st-t complex of the electrocardiogram using the karhunen-love transform: adaptive monitoring and alternans detection. Med Biol Eng Comput, 37(2):175-189.
  12. Langley, P., Bowers, E., Wild, J., Drinnan, M., Allen, J., Sims, A., Brown, N., and Murray, A. (2003). An algorithm to distinguish ischaemic and non-ischaemic st changes in the holter ecg. In CinC, pages 239-242.
  13. Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., and Strintzis, M. (1998). ECG pattern recognition and classification using non-linear transformations and neural networks: a review. Int J Med Inform, 52:191-208.
  14. Minchole, A., Jager, F., and Laguna, P. (2007). Discrimination between demand and supply ischemia episodes in holter recordings. In Conf Proc IEEE Eng Med Biol Soc, volume 2007, pages 2579-2582.
  15. Minchole, A., Skarp, B., Jager, F., and Laguna, P. (2005). Evaluation of a root mean squared based ischemia detector on the long-term st database with body position change cancellation. In CinC, pages 853-856.
  16. Moody, G. and Jager, F. (2003). Distinguishing ischemic from non-ischemic st changes: the physionet/computers in cardiology challenge 2003. In CinC, pages 235-237.
  17. Moody, G. and Marc, R. (1982). Development and evaluation of a 2-lead ecg analysis program. In CinC, pages 39-44.
  18. Papadimitriou, S., Mavroudi, S., Vladutu, L., and Bezerianos, A. (2001). Ischemia detection with a selforganizing map supplemented by supervised learning. IEEE Trans Neural Netw, 12(3):503-515.
  19. Papaloukas, C., Fotiadis, D. I., Likas, A., Stroumbis, C. S., and Michalis, L. K. (2002). Use of a novel rule-based expert system in the detection of changes in the st segment and the t wave in long duration ecgs. J Electrocardiol, 35(1):27-34.
  20. Rumelhart, D., Hintont, G., and Williams, R. (1986). Learning representations by back-propagating errors. Nature, 323:533-536.
  21. Smrdel, A. and Jager, F. (2004). Automated detection of transient st-segment episodes in 24 h electrocardiograms. Med Biol Eng Comput, 42(3):303-311.
  22. Smrdel, A. and Jager, F. (2008). An algorithm to estimate the st segment level in 24-hour ambulatory ecg records. In CinC, pages 701-704.
  23. Stadler, R. W., Lu, S. N., Nelson, S. D., and Stylos, L. (2001). A real-time st-segment monitoring algorithm for implantable devices. J Electrocardiol, 34 Suppl:119-126.
  24. Taddei, A., Costantino, G., Silipo, R., Emdin, M., and Marchesi, C. (1995). A system for the detection of ischemic episodes in ambulatory ecg. In CinC, pages 705-708.
  25. Thakor, N. V., Webster, J. G., and Tompkins, W. J. (1984). Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans Biomed Eng, 31(11):702- 706.
  26. Xing, W., Liang, X., Zhongwei, S., Zibin, Y., and Yi, P. (2007). Heart rate variability analysis of ischemic and heart rate related st-segment deviation episodes based on time-frequency method. In NFSI-ICFBI, pages 162-164.
  27. Zimmerman, M., Povinelli, R., Johnson, M., and Ropella, K. (2003). A reconstructed phase space approach for distinguishing ischemic from non-ischemic st changes using holter ecg data. In CinC, pages 243-246.
Download


Paper Citation


in Harvard Style

Zaunseder S., Aipperspach W. and Poll R. (2010). DISCRIMINATION BETWEEN ISCHEMIC AND HEART-RATE RELATED ST-EPISODES - Non-linear Classification for an Online Capable Approach . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 245-251. DOI: 10.5220/0002722802450251


in Bibtex Style

@conference{biosignals10,
author={S. Zaunseder and W. Aipperspach and R. Poll},
title={DISCRIMINATION BETWEEN ISCHEMIC AND HEART-RATE RELATED ST-EPISODES - Non-linear Classification for an Online Capable Approach},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={245-251},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002722802450251},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - DISCRIMINATION BETWEEN ISCHEMIC AND HEART-RATE RELATED ST-EPISODES - Non-linear Classification for an Online Capable Approach
SN - 978-989-674-018-4
AU - Zaunseder S.
AU - Aipperspach W.
AU - Poll R.
PY - 2010
SP - 245
EP - 251
DO - 10.5220/0002722802450251