AN ELECTRONIC INTERFACE FOR NEURAL ACTIVITY RECORDING AND STIMULATION
Gianmarco Angius, Caterina Carboni, Daniela Loi, Massimo Barbaro
2010
Abstract
A portable neural activity acquisition and stimulation system by means of tfLIFE implantable electrodes has been realized. The detecting circuit provides: a selective filtering made up of a 4th order high pass Multiple Feedback filter (f_ -3dB = 1.1kHz) and a 4th order low pass Multiple Feedback filter (f_ -3dB = 2kHz), a variable gain (24dB - 44dB) and a 16 bit analog to digital conversion. The stimulator allows to generate specific electrical signals through a digital-to-analog converter while stimulation parameters as frequency, duration and intensity are controlled by a digital microcontroller. Simulation results and first experimental results of the interface demonstrate how neural signals of a few of microvolts can be filtered, programmable amplified and digitalized without distortion.
References
- Gosselin, B. and Sawan, M. (2005). A low power portable multichannel neural data acquisition system. Proceedings of 10th Annual Conference of the International FES Society, pages 391-393.
- Jochum, T., Denison, T., and Wolf, P. (2009). Integrated circuit amplifiers for multi-electrode intracortical recording. J. Neural Eng., 6.
- Obeid, I., Nicolelis, M., and Wolf, P. (2004). A low power multichannel analog front end for portable neural signal recordings. J. Neurosci. Meth., 133:27-32.
- Salzman, C. D. and Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science, 264:231-237.
- Wang, Y., Wang, Z., L, X., and Wang, H. (2005). Fully integrated and low power cmos amplifier for neural signal recording. IEEE Engineering in Medicine and Biology Society, pages 5250-5230.
- Watkins, P., Kier, R., Lovejoy, R., Black, D., and Harrison, R. (2006). Signal amplification, detection and transmission in a wireless 100-electrode neural recording system. pages 2193-2196.
- Wessberg, Stambaugh, C., Kralik, J., Beck, P., Laubach, M., Chapin, J., Kim, J., Biggs, S., Srinivasan, M., and Nicolelis, M. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primate. Nature, 408(68102):361-365.
- Yoshida, K., Hennings, K., and Kammer, S. (2006). Acute performance of the thin-film longitudinal intrafascicular electrode. IEEE Conference Biomedical Robotics and Biomechatronics, BioRob, pages 296- 300.
Paper Citation
in Harvard Style
Angius G., Carboni C., Loi D. and Barbaro M. (2010). AN ELECTRONIC INTERFACE FOR NEURAL ACTIVITY RECORDING AND STIMULATION . In Proceedings of the Third International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2010) ISBN 978-989-674-017-7, pages 211-214. DOI: 10.5220/0002749702110214
in Bibtex Style
@conference{biodevices10,
author={Gianmarco Angius and Caterina Carboni and Daniela Loi and Massimo Barbaro},
title={AN ELECTRONIC INTERFACE FOR NEURAL ACTIVITY RECORDING AND STIMULATION},
booktitle={Proceedings of the Third International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2010)},
year={2010},
pages={211-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002749702110214},
isbn={978-989-674-017-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Third International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2010)
TI - AN ELECTRONIC INTERFACE FOR NEURAL ACTIVITY RECORDING AND STIMULATION
SN - 978-989-674-017-7
AU - Angius G.
AU - Carboni C.
AU - Loi D.
AU - Barbaro M.
PY - 2010
SP - 211
EP - 214
DO - 10.5220/0002749702110214