NEW RESEARCH LINES FOR MAX-SAT - Exploiting the Recent Resolution Rule for Max-SAT
Federico Heras
2010
Abstract
This paper presents the current state-of-the-art techniques for Max-SAT solving and points out new research lines in order to exploit the benefits of the novel resolution rule for Max-SAT.
References
- Argelich, J., Li, C. M., and Manyà, F. (2008). A preprocessor for max-sat solvers. In SAT, pages 15-20.
- Bonet, M. L., Levy, J., and Manyà, F. (2007). Resolution for max-sat. Artif. Intell., 171(8-9):606-618.
- Buresh-Oppenheim, J. and Mitchell, D. G. (2006). Minimum witnesses for unsatisfiable 2cnfs. In SAT, pages 42-47.
- Cha, B. and Iwama, K. (1996). Adding new clauses for faster local search. In Proc. of the 13thAAAI, pages 332-337, Portland, OR.
- Chu Min Li, F. M. and Planes, J. (2005). Exploiting unit propagation to compute lower bounds in branch and bound max-sat solvers. In Proc. of the 11th CP, Sitges, Spain.
- Eén, N. and Biere, A. (2005). Effective preprocessing in sat through variable and clause elimination. In SAT, pages 61-75.
- Heras, F. (2009). Max-sat resolution-based pre-processings and their effect on local search solvers. Submitted.
- Heras, F. and Larrosa, J. (2008). A max-sat inference-based pre-processing for max-clique. In SAT, pages 139- 152.
- Heras, F., Larrosa, J., and Oliveras, A. (2008). Minimaxsat: An efficient weighted max-sat solver. J. Artif. Intell. Res. (JAIR), 31:1-32.
- Larrosa, J., Heras, F., and de Givry, S. (2008). A logical approach to efficient max-sat solving. Artificial Intelligence, 172(2-3):204-233.
- Li, C. M., Manyà, F., and Planes, J. (2007). New inference rules for max-sat. J. Artif. Intell. Res. (JAIR), 30:321- 359.
- Liffiton, M. H. and Sakallah, K. A. (2008). Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning, 40(1):1-33.
- Lin, H., Su, K., and Li, C. M. (2008). Within-problem learning for efficient lower bound computation in max-sat solving. In AAAI, pages 351-356.
- Rish, I. and Dechter, R. (2000). Resolution versus search: Two strategies for sat. J. Autom. Reasoning, 24(1/2).
- Selman, B., Kautz, H. A., and Cohen, B. (1993). Local search strategies for satisfiability testing. In Proceedings of the second DIMACS Challenges on Cliques, Coloring and Satisfiability.
- Selman, B., Levesque, H. J., and Mitchell, D. G. (1992). A new method for solving hard satisfiability problems. In AAAI, pages 440-446.
- Silva, J. P. M. and Sakallah, K. A. (1996). Grasp - a new search algorithm for satisfiability. In ICCAD, pages 220-227.
- Xu, K., Boussemart, F., Hemery, F., and Lecoutre, C. (2007). Random constraint satisfaction: Easy generation of hard (satisfiable) instances. Artif. Intell., 171(8-9):514-534.
- 1Available at http://www.nlsde.buaa.edu.cn/ kexu/
Paper Citation
in Harvard Style
Heras F. (2010). NEW RESEARCH LINES FOR MAX-SAT - Exploiting the Recent Resolution Rule for Max-SAT . In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-674-021-4, pages 648-651. DOI: 10.5220/0002761706480651
in Bibtex Style
@conference{icaart10,
author={Federico Heras},
title={NEW RESEARCH LINES FOR MAX-SAT - Exploiting the Recent Resolution Rule for Max-SAT},
booktitle={Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2010},
pages={648-651},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002761706480651},
isbn={978-989-674-021-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - NEW RESEARCH LINES FOR MAX-SAT - Exploiting the Recent Resolution Rule for Max-SAT
SN - 978-989-674-021-4
AU - Heras F.
PY - 2010
SP - 648
EP - 651
DO - 10.5220/0002761706480651