COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS
Mario Konrad, Herbert Stögner, Andreas Uhl, Peter Wild
2010
Abstract
Rotation compensation is one of the computational bottlenecks in large scale iris-based identification schemes, since a significant amount of Hamming distance computations is required in a single match due to the necessary shifting of the iris codes to compensate for eye tilt. To cope with this problem, a serial classifier combination approach is proposed for iris-based identification, combining rotation-invariant pre-selection with a traditional rotation compensating iris code-based scheme. The primary aim, a reduction of computational complexity, can easily be met - at comparable recognition accuracy, the computational effort required is reduced to 20% or even less of the fully fledged iris code based scheme. As a by-product, the recognition accuracy is shown to be additionally improved in open-set scenarios.
References
- Daugman, J. (2004). How iris recognition works. IEEE Transactions on Circiuts and Systems for Video Technology, 14(1):21-30.
- Du, Y., Ives, R., Etter, D., and Welch, T. (2006). Use of one-dimensional iris signatures to rank iris pattern similarities. Optical Engineering, 45(3):037201-1 - 037201-10.
- Gentile, J. E., Ratha, N., and Connell, J. (2009). An efficient, two-stage iris recognition system. In Biometrics: Theory, Applications and Systems (BTAS'09), pages 1-5.
- Matschitsch, S., Stögner, H., Tschinder, M., and Uhl, A. (2008). Rotation-invariant iris recognition: boosting 1D spatial-domain signatures to 2D. In Filipe, J., Cetto, J., and Ferrier, J.-L., editors, ICINCO 2008: Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, volume SPSMC, pages 232-235. INSTICC Press.
- Park, C.-H. and Lee, J.-J. (2006). Extracting and combining multimodal iris features. In Proceedings of the 1st IAPR International Conference on Biometrics (ICB'06), number 3832 in Lecture Notes on Computer Science, pages 389-396.
- Qui, X., Sun, Z., and Tan, T. (2007). Coarse iris classification by learned visual dictionary. In Proceedings of the 2nd IAPR/IEEE International Conference on Biometrics (ICB'07), number 4642 in Lecture Notes on Computer Science, pages 770-779.
- Ross, A., Nandakumar, K., and Jain, A. (2006). Handbook of Multibiometrics. Springer.
- Sun, Z., Wang, Y., Tan, T., and Cui, J. (2005). Improving iris recognition accuracy via cascaded classifiers. IEEE Transactions on Systems, Man and Cybernetics, 35(3):435-441.
- Uhl, A. and Wild, P. (2009). Parallel versus serial classifier combination for multibiometric hand-based identification. In Tistarelli, M. and Nixon, M., editors, Proceedings of the 3rd International Conference on Biometrics 2009 (ICB'09), volume 5558 of LNCS, pages 950-959. Springer Verlag.
- Vatsa, M., Singh, R., and Noore, A. (2005). Reducing the false rejection rate of iris recognition using textural and topological features. Int. Journal of Signal Processing, 2(2):66-72.
- Yu, L., Wang, K., and Zhang, D. (2006). A novel method for coarse iris classification. In Proceedings of the 1st IAPR International Conference on Biometrics (ICB'06), number 3832 in Lecture Notes on Computer Science, pages 404-410.
- Zhang, P.-F., Li, D.-S., and Wang, Q. (2004). A novel iris recognition method based on feature fusion. In Proceedings of the International Conference on Machine Learning and Cybernetics, pages 3661-3665.
Paper Citation
in Harvard Style
Konrad M., Stögner H., Uhl A. and Wild P. (2010). COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 85-90. DOI: 10.5220/0002821100850090
in Bibtex Style
@conference{visapp10,
author={Mario Konrad and Herbert Stögner and Andreas Uhl and Peter Wild},
title={COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={85-90},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002821100850090},
isbn={978-989-674-028-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - COMPUTATIONALLY EFFICIENT SERIAL COMBINATION OF ROTATION-INVARIANT AND ROTATION COMPENSATING IRIS RECOGNITION ALGORITHMS
SN - 978-989-674-028-3
AU - Konrad M.
AU - Stögner H.
AU - Uhl A.
AU - Wild P.
PY - 2010
SP - 85
EP - 90
DO - 10.5220/0002821100850090