DISPARITY MAPS FOR FREE PATH DETECTION

Nuria Ortigosa, Samuel Morillas, Guillermo Peris-Fajarnés, Larisa Dunai

2010

Abstract

In this paper we introduce amethod to detect free paths in real-time using disparitymaps froma pair of rectified stereo images. Disparity maps are obtained by processing the disparities between left and right rectified images from a stereo-vision system. The proposed algorithm is based on the fact that disparity values decrease linearly from the bottom of the image to the top. By applying least-squares fitting over groups of image columns to a linear model, free paths are detected. Only those pixels that fulfil the matching requirements are identified as free path. Results from outdoor scenarios are also presented.

References

  1. A. Huertas, L. Matthies, A. R. (2005). Stereo-based tree traversability analysis for autonomous off-road navigation. In IEEE Computer Society. IEEE Workshop on Applications of Computer Vision.
  2. A. Wedel, U. Franke, H. B. and Cremers, D. (2008). Bspline modeling of road surfaces for freespace estimation. In IEEE. IEEE Intelligent Vehicles Symposium.
  3. C. Lawrence Zitnick, S. B. K. (2007). Stereo for imagebased rendering using image over-segmentation. International Journal of Computer Vision, 75(1):49-65.
  4. D. Scharstein, R. S. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1/2/3):7-42.
  5. E. Grosso, M. T. (1995). Active/dynamic stereo vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9):868-879.
  6. H. Badino, U. Franke, R. M. (2007). Free space computation using stochastic occupancy grids and dynamic programming. Workshop on Dynamical Vision, ICCV, Rio de Janeiro (Brazil).
  7. H. Badino, R. Mester, T. V. and Franke, U. (2008). Stereobased free space computation in complex traffic scenarios. pages 189-192. IEEE Southwest Symposium on Image Analysis & Interpretation.
  8. J.M. Loomis, R.G. Golledge, R. K. (1998). Navigation system for the blind: Auditory display modes and guidance. Presence, 7(2):193-203.
  9. J.P. Tarel, S. L. and Charbonnier, P. (2007). Accurate and robust image alignment for road profile reconstruction. In IEEE. IEEE International Conference on Image Processing.
  10. L. Nalpantidis, I. K. and Gasteratos, A. (2009). Stereovision-based algorithm for obstacle avoidance. In Lecture Notes in Computer Science. Intelligent Robotics and Applications.
  11. M. Bertozzi, A. B. (1998). Gold: A parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Transactions on Image Processing, 7(1):62-81.
  12. M. Snaith, D. Lee, P. P. (1998). A low-cost system using sparse vision for navigation in the urban environment. Image and Vision Computing, 16(4):225-233.
  13. M. Vergauwen, M. Pollefeys, L. V. G. (2003). A stereovision system for support of planetary surface exploration. Machine Vision and Applications, 14(1):5-14.
  14. N. Molton, S. Se, J. B. e. a. (1998). A stereo vision-based aid for the visually impaired. Image and Vision Computing, 16(4):251-263.
  15. P.D. Picton, M. C. (2008). Relaying scene information to the blind via sound using cartoon depth maps. Image and Vision Computing, 26(4):570-577.
  16. Q. Yang, L. Wang, R. Y. e. a. (2009). Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3):492-504.
  17. R. Labayrade, D. Aubert, J. T. (2002). Real time obstacle detection in stereo vision on non-flat road geometry through v-disparity representation. In INRIA. IEEE Intelligent Vehicle Symposium.
  18. S. Birchfield, C. T. (1999). Depth discontinuities by pixelto-pixel stereo. International Journal of Computer Vision, 17(3):269-293.
  19. S. Kubota, T. Nakano, Y. O. (2007). A global optimization for real-time on-board stereo obstacle detection systems. In IEEE. IEEE Intelligent Vehicles Symposium.
  20. S. Se, M. B. (2003). Road feature detection and estimation. Machine Vision and Applications, 14(3):157-165.
  21. T. H. Nguyen, J.S. Nguyen, D. P. and Nguyen, H. (2007). Real-time obstacle detection for an autonomous wheelchair using stereoscopic cameras. Conf Proc IEEE Eng. Med. Biol. Soc., 2007(1):4775- 4778.
  22. U. Franke, A. J. (2000). Real-time stereo vision for urban traffic scene understanding. In IEEE. IEEE Intelligent Vehicles Symposium.
  23. Y. Baudoin, D. Doroftei, G. D. C. e. a. (2009). View-finder: Robotics assistance to fire-fighting services and crisis management. In IEEE Computer Society. IEEE International Workshop on Safety, Security, and Rescue Robotics.
  24. Y. Huang, S. Fu, C. T. (2005). Stereovision-based object segmentation for automotive applications. EURASIP Journal on Applied Signal Processing, 2005(14):2322-2329.
Download


Paper Citation


in Harvard Style

Ortigosa N., Morillas S., Peris-Fajarnés G. and Dunai L. (2010). DISPARITY MAPS FOR FREE PATH DETECTION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 310-315. DOI: 10.5220/0002821603100315


in Bibtex Style

@conference{visapp10,
author={Nuria Ortigosa and Samuel Morillas and Guillermo Peris-Fajarnés and Larisa Dunai},
title={DISPARITY MAPS FOR FREE PATH DETECTION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={310-315},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002821603100315},
isbn={978-989-674-028-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - DISPARITY MAPS FOR FREE PATH DETECTION
SN - 978-989-674-028-3
AU - Ortigosa N.
AU - Morillas S.
AU - Peris-Fajarnés G.
AU - Dunai L.
PY - 2010
SP - 310
EP - 315
DO - 10.5220/0002821603100315