REAL-TIME ENHANCEMENT OF IMAGE AND VIDEO SALIENCY USING SEMANTIC DEPTH OF FIELD
Zhaolin Su, Shigeo Takahashi
2010
Abstract
In this paper, we propose a method for automatically directing viewers' visual attention to important regions of images and videos in low-level vision. Inspired by the modern model of visual attention, the importance map of an input scene is automatically calculated by the combination of low-level features such as intensity and color, which are extracted using spatial filters in different spatial frequencies, together with a set of temporal features extracted using a temporal filter in case of dynamic scenes. A variable-kernel-convolution based on the importance map is then performed on the input scene, in order to make semantic depth of field effects in a way that important regions remain focused while others are blurred. The pipeline of our method is efficient enough to be executed in real time on modern low-end machines, and the associated experiment demonstrates that the proposed system can be complementary to the human visual system.
References
- Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. (2009). Frequency-tuned Salient Region Detection. In Proc. IEEE International Conf. Computer Vision and Pattern Recognition (CVPR2009), pages 1597-1604.
- Bruce, N. and Tsotsos, J. (2007). Attention based on information maximization. Journal of Vision, 7(9):950.
- Gao, D. and Vasconcelos, N. (2007). Bottom-up saliency is a discriminant process. In Proc. IEEE International Conf. Computer Vision (ICCV2007), pages 1-6.
- Harel, J., Koch, C., and Perona, P. (2006). Graph-based visual saliency. In Proc. Neural Information Processing Systems (NIPS2006), pages 570-577.
- Hou, X. and Zhang, L. (2007). Saliency detection: A spectral residual approach. In Proc. IEEE International Conf. Computer Vision and Pattern Recognition (CVPR2007), pages 1-8.
- Itti, L. and Baldi, P. F. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10):1295-1306.
- Itti, L. and Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3):194-203.
- Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 20(11):1254-1259.
- Koch, C. and Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227.
- Kosara, R., Miksch, S., and Hauser, H. (2001). Semantic depth of field. In Proc. IEEE Symp. Information Visualization 2001 (INFOVIS2001), pages 97-104.
- Kosara, R., Miksch, S., and Hauser, H. (2002a). Focus+Context taken literally. IEEE Computer Graphics and Applications, 22(1):22-29.
- Kosara, R., Miksch, S., Hauser, H., Schrammel, J., Giller, V., and Tscheligi, M. (2002b). Useful properties of semantic depth of field for better F+C visualization. In Proc. Symp. Data Visualisation 2002 (VISSYM2002), pages 205-210.
- Ma, Y.-F. and Zhang, H.-J. (2003). Contrast-based image attention analysis by using fuzzy growing. In Proc. 11th ACM International Conf. Multimedia (MULTIMEDIA2003), pages 374-381.
- Simons, D. J. (2000). Current approaches to change blindness. Visual Cognition, 7:1-15.
- Tsotsos, J. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13(3):423-445.
- Zhang, L., Tong, M. H., and Cottrell, G. W. (2009). Sunday: Saliency using natural statistics for dynamic analysis of scenes. In Proc. 31st Annual Cognitive Science Society Conf. (CogSci2009), pages 2944-2949.
- Zhang, L., Tong, M. H., Marks, T. K., Shan, H., and Cottrell, G. W. (2008). SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7):1-20.
Paper Citation
in Harvard Style
Su Z. and Takahashi S. (2010). REAL-TIME ENHANCEMENT OF IMAGE AND VIDEO SALIENCY USING SEMANTIC DEPTH OF FIELD . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 370-375. DOI: 10.5220/0002825703700375
in Bibtex Style
@conference{visapp10,
author={Zhaolin Su and Shigeo Takahashi},
title={REAL-TIME ENHANCEMENT OF IMAGE AND VIDEO SALIENCY USING SEMANTIC DEPTH OF FIELD},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={370-375},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002825703700375},
isbn={978-989-674-029-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - REAL-TIME ENHANCEMENT OF IMAGE AND VIDEO SALIENCY USING SEMANTIC DEPTH OF FIELD
SN - 978-989-674-029-0
AU - Su Z.
AU - Takahashi S.
PY - 2010
SP - 370
EP - 375
DO - 10.5220/0002825703700375